воскресенье, 14 января 2018 г.

Обоснование режимов шлифования плиточного стекла

http://www.ce-studbaza.ru/werk.php?id=9201

Обоснование режимов шлифования плиточного стекла
Таким образом, производительность обработки и качество обработанной поверхности определяют тем, какой из процессов разрушения преобладает, так как в общем виде процесс шлифования происходит при наличии одновременно хрупких и упругопластических деформаций материала. Установлено, что независимо от характера разрушения материала, закономерности любого процесса обработки характеризуются условиями работы алмазных зерен в процессе резания.
При шлифовании зерна абразива перемещаются по обрабатываемому материалу и создают на его поверхности царапины, сопровождающиеся трещинами, идущими в глубь материала. В отличие от обработки металлов и сплавов при пересечении трещин, сопровождающих царапины, происходит выкалывание частиц материала с его поверхности и образование рельефного поверхностного слоя, состоящего из выступов и впадин. Продолжающиеся в глубь материала под рельефным слоем, трещины образуют так называемый «трещиноватый» (дефектный) слой. Совокупность рельефного и «трещиноватого» слоев образуют разрушенный слой.
При шлифовании неметаллических материалов абразивом качество поверхности зависит от условий обработки: кинематики и режимов шлифования, микротвердости обрабатываемого материала, характеристики абразива, вида и способа подачи СОЖ в зону обработки.
Степень влияния различных технологических факторов на шероховатость поверхности не одинакова. Наиболее эффективного уменьшения шероховатости поверхности обрабатываемого стекла можно достичь за счет выбора характеристик абразива. Они, в свою очередь, по степени воздействия располагаются в следующем порядке: зернистость, концентрация, марка.
Зернистость абразива - наиболее важный из всех этих факторов. Уменьшением зернистости можно добиться снижения шероховатости в несколько раз. Физическая сущность повышения шероховатости шлифованной поверхности с ростом зернистости абразива достаточно сложна. В основном это происходит за счет уменьшения числа зерен на единицу поверхности при увеличении их зернистости и увеличивающейся разновысотности. Мелкозернистый абразив, обладая большим числом зерен и более ровной высотой, наносит на обрабатываемую поверхность большое число мелких царапин, незначительно различающихся по глубине, уменьшая тем самым рельефный и «трещиноватый» слой на стекле.
Повышение концентрации абразива обеспечивает снижение шероховатости шлифованной поверхности стекла. Увеличение числа зерен на единицу поверхности, а следовательно, уменьшение их разновысотности делает режущий рельеф более сглаженным. В результате на обрабатываемую поверхность наносят риски и царапины с меньшей разницей глубин. Однако значительного эффекта за счет изменения этой характеристики абразива достичь нельзя. Так при повышении концентрации абразива в 3 раза шероховатость шлифованной поверхности стекла снижается всего на 30-40%.
Необходимо учесть, что на доводочных притирочных операциях, например при обработке оптического стекла при больших площадях контакта, необходимо применять пониженную концентрацию алмазного инструмента.
По сравнению с характеристиками абразива режимы шлифования оказывают на шероховатость обработанной поверхности несколько меньшее влияние. Так при торцовом шлифовании стекла с увеличением скорости резания шероховатость обработанной поверхности уменьшается незначительно и изменяется в пределах одного класса шероховатости. Изменение давления шлифования и скорости продольной и поперечной подач практически не отражается на шероховатости обработанной поверхности, особенно на операциях черного шлифования.
Влияние интенсивности режимов резания и характеристик инструмента на шероховатость обработанной поверхности в практике абразивной обработки чаще всего выражают в виде степенных зависимостей. Формула для определения Ra, мкм при тонком шлифовании оптического стекла имеет вид: [1, с. 52, таблица 2,19]


где D – размер абразивного зерна,
К – концентрация абразива в инструменте,
НRВ – твердость связки,
S – твердость обрабатываемого материала,
р – давление,
V – скорость резания.
При круглом наружном шлифовании кварцевого стекла.



где VКР – окружная скорость инструмента,
VД – окружная скорость детали,
S – подача на оборот детали,
t – глубина резания.
Анализ приведенных формул показывает, что на среднее арифметическое отклонение профиля обработанной поверхности Ra наибольшее влияние из характеристик инструмента оказывает зернистость абразива, а из режимных параметров – скорость резания.
Абразивное шлифование большинства неметаллических материалов невозможно без применения смазочно-охлаждающих жидкостей (СОЖ). При обработке стекла СОЖ имеет особое значение, так как она принимает активное участие в разрушении материала, влияет на работоспособность и стойкость инструмента, а также на величину «трещиноватого» и рельефного слоев обработанного материала. Основными функциями СОЖ при шлифовании являются теплоотвод (охлаждение); уменьшение трения (смазывание); удаление продуктов обработки (смывание) и химическое воздействие на обрабатываемый материал и инструмент.
Охлаждающее действие СОЖ заключается в стабильном и быстром отводе тепла, возникающего в зоне обработки. В основном охлаждающее действие жидкости проявляется в поверхностных слоях обрабатываемого материала и инструмента, где в процессе разрушения материала и трения выделяется большое количество тепла.
Смазочное действие СОЖ заключается в ее способности образовывать устойчивые смазывающие пленки между трущимися поверхностями обрабатываемого материала и инструмента. Это вызывает снижение коэффициента трения и способствует тем самым уменьшению выделения тепла. Интенсивность удаления отходов шлифования из зоны обработки определяется моющими свойствами жидкости и условиями ее поступления. На моющие свойства СОЖ в основном влияют физико-химические свойства жидкости, ее количество и способ подачи.
Химическое действие СОЖ заключается в облегчении условий разрушения обрабатываемого материала благодаря присутствию в ней поверхностно-активных веществ, которые влияют на интенсивность изнашивания связки, и способствует процессу самозатачивания инструмента. Входящие в состав СОЖ поверхностно-активные вещества проникают в трещины, возникающие в процессе разрушения, и образуют в них тончайшие расклинивающие пленки, облегчающие процесс разрушения материала. Абсорбирование этих веществ на абразиве защищает зерна от налипания на них частиц ошлифованного материала и тем самым предупреждает засаливание поверхности инструмента. Кроме этого, под воздействием поверхностно-активных веществ происходит классификация поверхностных слоев связки, что позволяет увеличить интенсивность ее изнашивания и улучшить условия самозатачивания инструмента.
Таким образом, СОЖ оказывает сильное влияние на процесс шлифования, воздействует как на зерно и связку инструмента, так и на обрабатываемый материал. Общее участие СОЖ в процессе шлифования заключается в смывании и удалении продуктов разрушения материала и износа инструмента.
Исследования влияния смазочно-охлаждающей жидкости на процессы абразивной обработки стекла показали пути выбора СОЖ, установили механизм ее действия и дали возможность разработать эффективные составы. СОЖ классифицируется по химической структуре на водные и эмульсионные жидкости и углеводородные составы.
Вода представляет собой самою простую и доступную СОЖ, в известной степени удовлетворяющую требованиям к охлаждению, но не обладающую достаточными смазывающими и химическими свойствами. Кроме того, вода вызывает коррозию деталей станка и инструмента. Водные растворы щелочей и моющих средств, хотя не вызывают коррозию деталей, но и не обеспечивают высокой стабильности и интенсивности процесса шлифования. Кроме того, они не предохраняют инструмент от засаливания и затупления вследствие низкой поверхностной активности.
Органические жидкости, такие как керосин, скипидар и минеральные масла, способствуют стабильной работе абразивных зерен и препятствуют засаливанию инструмента. Однако большими недостатками их применения являются необходимость введения дополнительной операции промывки изделий после обработки, высокая пожароопасность и вредное воздействие на организм человека.
Водные эмульсии масел с добавлением поверхностно активных, антикоррозионных, бактерицидных и других присадок наиболее полно отвечают требованиям, предъявляемым к СОЖ. Эмульсии, имеющие высокую дисперсность, хорошие смазывающие и моющие свойства, изготавливают на основе стандартных, выпускаемых промышленностью эмульсоров.
На производительность шлифования и удельный расход абразива влияют способ подачи и величина расхода СОЖ, что приобретает особое значение при больших площадях контакта инструмента и обрабатываемого материала. Наиболее часто встречающиеся способы подачи СОЖ – подача свободно падающей струей; напорной струей; струйно-напорный внезоновый способ; контактный, через внутреннюю полость инструмента.
На большинстве шлифовальных станков шлифовальных станков применяют подачу СОЖ в зону резания свободно падающей струей, так называемое «охлаждение поливом». СОЖ подают центробежным насосом через сопло, имеющая целевое выходное отверстие, при этом скорость истечения жидкости составляет примерно 1 м/с и давление жидкости не превышает 0,15…0,20 МПа.
Подача СОЖ напорной струей существенно не отличается от подачи СОЖ свободнопадающей струей, давление жидкости повышается до 1,5 МПа и более. Повышение давления приводит к увеличению потока СОЖ, что усиливает отвод тепла от обрабатываемой детали. Эффективность охлаждения возрастает в результате проникновения СОЖ к участкам поверхности детали, расположенным в непосредственной близости от зоны резания. Усиливается также смазочное действие СОЖ, поэтому подача СОЖ напорной струей более эффективна, чем подача СОЖ поливом.
Струйно-напорным внезоннымым способом СОЖ подают под давлением на рабочую поверхность шлифовального круга вне зоны резания, через одно или несколько сопл. Струи СОЖ с определенной силой действуют на рабочую поверхность круга, очищая связку и абразивные зерна от отходов шлифования. С технической и экономической точек зрения струйно-напорный внезонный способ является одним из наиболее эффективных при наружном шлифовании.
При торцовом шлифовании стекла и при сверлении наиболее часто применяется подача СОЖ через внутреннюю полость инструмента: в этом случае достигается хороший подвод ее в зону резания.
Интенсивность подачи СОЖ должна возрастать с увеличения площади контакта между инструментом и деталью, диаметра инструмента, а также с уменьшением зернистости кругов. Чем выше качество шлифованной поверхности, сложнее ее формы, тоньше стенки деталей, тем обильнее следует подавать СОЖ. Установлено, что при торцовом шлифовании оптического стекла кольцевым алмазным инструментом оптимальный расход СОЖ находится в пределах 10…12 л/мин, а при обработке периферии плоского круга – в пределах 8…10 л/мин., при сверлении стекла 6…8 л/мин. Шероховатость обработанной в значительной мере зависит от количества и размера частиц механических примесей в СОЖ. При черновом шлифовании допускается повышенная концентрация шлаков в СОЖ.
При чистовом шлифовании, когда требуется получить шероховатость поверхности не ниже параметров Ra = 0,63…0,32 мкм, концентрация примесей не должна превышать 0,01…0,02 % массы воды, размеры частиц шлака не должны превышать половины допустимого значения среднего отклонения профиля Ra. Поэтому рекомендуется опираться чернового и чистового шлифования проводить на разных станках, либо производить тщательную очистку или смену СОЖ перед чистовой обработкой. При обработке материалов между инструментом и материалом возникает сила взаимодействия, называемая силой резания, Эта сила – результат упругих деформаций материала, трения абразивных зерен об обрабатываемый материал, а также отделение, стружки от обрабатываемого материала (диспергирования). Знание значения сил резания и их составляющих бывает необходимо во многих случаях. Так как значение нормальной и тангенциальной составляющих силы резания определяет производительность шлифования, температура и мощность шлифования, шероховатость обработанной поверхности, то знание закономерностей и изменение сил резания дает возможность выбрать оптимальный режим шлифования, обеспечивающий высокую производительность обработки и значительный срок службы абразивного инструмента.
Для измерения сил резания удобно пользоваться проекциями вектора силы Р На оси координат PX, PY, PZ . Для случая торцового шлифования возникающая сила резания, и положения составляющих этой силы в пространстве приведены на рисунке 1.


Рисунок 1 – Силы резания при плоском шлифовании
Оси координат располагаются следующим образом: Х – по радиусу шлифовального круга параллельно продольной подачи; Y – параллельно оси вращения инструмента; Z – плоскости изделия касательно к шлифовальному кругу в точке контакта круга с изделием.
Для измерения составляющих силы резания при торцовом шлифовании стекла применяют трехкомпонентный тензометрический мост с проволочными датчиками сопротивления. Зависимость составляющих силы резания представлены на рисунке 2



Рисунок 2 – Графики зависимости силы резания
от технологических параметров

При увеличении нормальной силы и скорости продольной подачи силы резания значительно возрастают. При увеличении скорости резания, составляющие силы резания уменьшаются.
Увеличение концентрации абразивных зерен в инструменте приводит к уменьшению составляющих силы резания, причем значительнее в области меньших концентраций. С увеличением зернистости порошка, при прочих равных условиях составляющие силы резания уменьшаются.
Составляющие силы резания и мощности шлифования рассчитываются по формулам




где РН – усилие прижима инструмента к обрабатываемой поверхности (нормальная нагрузка);
рУД – удельное давление;
VК – окружная скорость инструмента;
SПР – продольная подача,
KZ, KX, Kn – суммарные поправочные коэффициенты, равные произведению частных поправочных коэффициентов, учитывающих влияние на составляющие силы и мощность резания..
Анализ этих зависимостей позволяет сделать заключение, что наибольшее влияние на изменение сил резания оказывают давление шлифования и скорость продольного перемещения стекла, скорость резания влияет на силы резания несколько меньше. На изменение эффективной мощности шлифования режимные параметры влияют примерно в одинаковой степени.
Из практики абразивной обработки стекла температура в зоне контакта инструмента и обрабатываемого материала не превышает 300…350° С и не оказывает существенного влияния на изнашивание инструмента, структуру и качество поверхностных слоев обрабатываемого материала.

Комментариев нет: