понедельник, 26 февраля 2018 г.

Потребительский кредит,его организация и перспективы развития ( на примере банка ПАО АКБ Урал ФД )

Потребительский кредит,его организация и перспективы развития ( на примере банка ПАО АКБ Урал ФД )

http://www.ce-studbaza.ru/werk.php?id=9428

Потребительский кредит,его организация и перспективы развития ( на примере банка ПАО АКБ Урал ФД )

Потребительский кредит,его организация и перспективы развития ( на примере банка ПАО АКБ Урал ФД )

http://www.ce-studbaza.ru/werk.php?id=9428

Разработка и расчёт перемешивающего устройства емкости для созревания кефира

http://www.ce-studbaza.ru/werk.php?id=9427

3 Разработка и расчёт перемешивающего устройства емкости для созревания кефира

3.1 Требования, предъявляемые к перемешивающим устройствам
Перемешивающее устройство предназначены для перемешивания продукта и интенсификации теплообмена. Качество перемешивания, определяющее структуру и однородность состава перемешивающего продукта, оценивают степенью перемешивания, которая определяется взаимным расположением двух или более компонентов продукта после окончания перемешивания всей системы. Основными характеристиками перемешивающих устройств являются интенсивность работы и эффективность перемешивания.
Интенсивность работы перемешивающего устройства определяется продолжительностью технологического процесса при постоянной частоте вращения. Эффективность перемешивания оценивается удельным расходом энергии (на единицу номинального объёма) [2,19].
Конструкция перемешивающего устройства должна обеспечивать равномерное перемешивание продукта без изменения технологических параметров. Основные требования, предъявляемые к приводу перемешивающего устройства, - компактность, а также возможность регулирования частоты вращения вала мешалки. Кроме того, привод должен быть таким, чтобы исключалась возможность попадания смазочных материалов в продукт и на поверхность деталей, соприкасающихся с продуктом. Вращающие части привода перемешивающего устройства должны иметь ограждение. Электродвигатель привода должен иметь закрытое обдуваемое исполнение по ГОСТ 13859 – 68. На стойке привода или крышке редуктора должна быть прикреплена стрелка (или отлита) окрашенная в красный цвет, указывающая направление вращения мешалки.
Отклонение вала по вертикали при установке в аппарате не должно быть более 0,3 мм на 1м длины. При центровке вала редуктора с промежуточным валом или валом мешалки с помощью муфты несоосность вследствие смещения осей не должна превышать 0,05 мм, а вследствие излома осей 0,05 мм на 1м длины вала. Радиальное биение поверхности вала в месте установки уплотнительного устройства в зависимости от типа уплотнения и диаметра вала не должно превышать 0,1 – 0,25 мм. Температура корпуса подшипников привода перемешивающего устройства не должна превышать . Конструкция перемешивающего устройства и его крепление не должны препятствовать автоматической без разборной мойке всей внутренней поверхности корпуса емкости.

3.2 Обоснование и краткое описание конструкции перемешивающего устройства
Одним из основных направлений технического совершенствования современного оборудования является разработка конструкции, обеспечивающая получение продуктов высокого качества. Развитие этого направления сопровождается усложнением общего конструктивного исполнения емкостей для созревания кисломолочных продуктов за счет введения в аппаратурную схему новых видов оборудования, повышения степени автоматизации процесса, использования более прогрессивных методов обработки продукта на различных стадиях технологического процесса. В месте с тем в отдельных разработках предусмотрено не только повышение качества продукта, но и обеспечение компактности установок, обладающих пониженной металлоемкостью и повышенными технико-экономическими показателями.
Примером подобного решения может служить предлагаемое перешивающее устройство ёмкости для кисломолочных напитков.
На предприятии ОАО маслодельный завод «Ардатовский» имеется линия по производству кефира. В ее состав входит емкость для созревания кисломолочных продуктов Я1-ОСВ-1, производительность которой составляет 1000 литров в смену. На данный момент линия производит лишь 400 литров в смену. следовательно емкость загружена только на 40%.
Целью данного дипломного проекта является совершенствование технологической линии производства кефира, и предлагаются мероприятия по улучшению качества кефира.
С целью улучшения работы емкости предлагается установить перемешивающее устройство с трансформирующейся верхней частью. При использовании агрегата на 400л верхняя часть мешалки находится в собранном состоянии, прижатой к валу, что позволяет снизить усилие крутящего момента на вал, и следовательно экономит электроэнергию. В случае возникновения необходимости использовать емкость на полную мощность 1000л верхняя часть мешалки легко раскладывается, что позволит без особых усилий переоборудовать емкость.
Данная конструкция является экономически выгодной так как позволяет не приобретать новую емкость требуемой производительности, что значительно снижает финансовые затраты на покупку и доставку нового оборудования, и экономит время. Данное перемешивающее устройство изготавливается в условиях ремонтной мастерской предприятия с помощью следующего оборудования: токарный станок 1К62; электродуговая сварка; электродрель; ножницы по металлу, имеющегося на предприятии.
Кроме того в предлагаемой конструкции уменьшаем расстояние между днищем и перемешивающим устройством, для предотвращения образования осадка на дне корпуса, и более равномерного перемешивания. Это позволяет улучшить технологию производства выпускаемой продукции, и увеличивает качество производимого кефира. Изменение расстояния от днища емкостного аппарата до перемешивающего устройства не отражается на затратах мощности, расходуемой на перемешивание Таким образом мы сможем повысить качество выпускаемой продукции, при этом снизим расход электроэнергии и оптимизируем работу мешалки в зависимости от загруженности технологической линии.
3.3 Расчет основных элементов конструкции

3.3.1 Подбор электродвигателя
Расчёт перемешивающего устройства сводится к определению мощности, необходимой для работы. В общем виде мощность, расходуемая на перемешивание, зависит от частоты вращения мешалки, физических свойств перемешиваемо среды, ускорения свободного падения и геометрических характеристик ёмкости и мешалки [2,8].
(3.1)
Определим мощность, необходимую для работы перемешивающего устройства:
(3.2)
где h – высота мешалки, 0,535 м;
z – число лопастей, 4;
и - диаметр мешалки соответственно наружный и внутренний, м;
- коэффициент, зависящий от соотношения размеров мешалки, 1,1;
- плотность кефира, 1027 кг/

Принимаем асинхронный электродвигатель RAM71B4У2.

3.3.2 Расчёт перемешивающего устройства
Цилиндрический сосуд заполнен жидкостью. С осью цилиндра совпадает ось мешалки, имеющей n = 4 лопастей длиной l = 1,0375 м. Радиус внутренней кромки лопасти , наружной . После включения двигателя мешалка почти мгновенно приобретает угловую скорость , в дальнейшем почти не изменяющуюся [14,21,23].
Лопасть смещает жидкость, которая приобретает кинетическую энергию. 1 с массой поглотит:
(3.3)
где - плотность продукта, кг/ .

Определим кинетическую энергию, сообщаемую жидкости при наличии n лопастей:
(3.4)

Формулу (3.3) дополним множителем С, отражающим поправку к теории, обусловленную тем, что вязкая жидкость увлекается не только поверхностью мешалки , но в некоторой мере захватывается и из окружающей среды. Учитывая к.п.д. пускового механизма, получим:
(3.5)

Данная формула получена в предложении, что жидкость неподвижна, а мешалка вращается с угловой скоростью . Это предположение верно только в течение одного мгновенья. Немедленно вслед за воздействием мешалки жидкость выйдет из состояния покоя и будет перемещаться с угловой скоростью . Это обусловлено тем, что движение жидкости тормозится силой трения о поверхность цилиндра. Угловая скорость перемещения жидкости относительно мешалки составит:
(3.6)

При скорости мощность, потребляемая для вращения мешалки:
(3.7)

Таким образом, следует различать две мощности, необходимые для вращения мешалки: пусковую, определяемую по формуле (3.5), и рабочую, по формуле (3.7). Рабочая всегда меньше пусковой.
Из формул (3.5) и (3.7) следует, что пусковая и рабочая мощности относятся как кубы угловых скоростей:
(3.8)

Во время стабилизированного режима крутящий момент будет равен:
(3.9)

Определим в пусковой период крутящий момент:
(3.10)

Определим критерий относительной скорости по формуле:
(3.11)
К сожалению, до сих пор этому критерию не уделялось внимания, а между тем именно он является определяющей величиной для процесса перемешивания. Угловая скорость характеризует интенсивность пронизывания жидкости лопастью.
Необходимо уяснить, мешалками какой формы достигается наиболее успешно макроэффект переноса масс, способствующий выравниванию состава жидкости и какую роль играют скорости, предопределяющие, с одной стороны, перенос масс, с другой – сепарирующий микроэффект вихрей, возникающих при всяком перемешивании.
Если руководствоваться соображением, что интенсивность теплообмена между жидкостью и стенкой зависит от скорости движения жидкости вдоль стенки, то лопасть мешалки должна иметь такие размеры, при которых она заполняет всё осевое сечение сосуда. При этих условиях жидкость будет двигаться вдоль стенки с наибольшей скоростью , но не будет происходить перемешивание, что невыгодно для теплообмена. Так как нагрев массы должен быть по возможности равномерным, то наилучшая теплопередача должна быть связана с наилучшим перемешиванием, т. е. С определённым значением критерия .
Пренебрегая влиянием днища цилиндра и полагая, что поверхность равна:
(3.12)
где Н – высота цилиндра, 1,17м;
- диаметр цилиндра, 0,73м.
(3.13)
Получим:
(3.14)
Соотношение представляет собой геометрический критерий, который может быть близок к единице, если высота лопастей немного меньше глубины цилиндра. Обозначим = .
- безразмерная группа, определяемая конструктивными параметрами мешалки. В группе величин коэффициент является функцией Re. Коэффициент С зависит от Re и соотношения размеров аппарата, характеризуемых критериями и .
Тогда получим критериальное соотношение:
(3.15)
Очевидно, что размеры мешалки (ширина лопасти и её расстояние от стенки) существенно влияют на процесс. Ясно например, что узкая лопасть прорежет жидкость с увеличенной относительной скоростью. Такая увеличенная скорость может оказаться необходимой, если в жидкой среде находятся массы, подлежащие раздроблению. Но что крайне не желательно в нашем случае.
(3.16)
где - расстояние от оси вращения до поверхности объёма;
- угол, охватывающий объем жидкости от любого вертикального сечения до того места, где толщина объёма сводится к нулю, или до следующей лопасти.
Формула (3.16) дает обоснование для подбора ширины лопасти.
Предполагая, что угол равен углу между лопастями, причем жидкость покрывает всю поверхность и изогнутый объём жидкости выклинивается перед следующей лопастью, где .
Полагая что , получим:
(3.17)
Преобразуем формулу (3.17):
(3.18)
Данная формула характеризует отношение ширины лопасти к радиусу резервуара.

При соблюдении отношения ширины лопасти к радиусу резервуара, определяемого по формуле (3.18), поверхность резервуара покрыта жидкостью. При большем отношении пространство между лопастями заполнено с избытком, при меньшем – часть поверхности обнажена.
В нашем случае отношение ширины лопасти к радиусу резервуара равно:
(3.19)
Из формулы (3.19) следует, что поверхность резервуара обнажена.
Ширину лопасти необходимо принимать минимальной для аппаратов, в которых перемешивание сопровождается теплообменом.


3.3.3 Расчет вала
Опорные реакции в горизонтальной плоскости [8,18]:
(3.20)
(3.21)
кг
(3.22)
(3.23)
кг
Изгибающие моменты в горизонтальной плоскости:
(3.24)
Мх1 = 24,3  60,45 = 1468кг/см
Мх2 = Rха  l2 (3.25)
Мх2 = 26 56,45= 1468кг/см



Опорные реакции вала изображены на рисунке 3.1:
Горизонтальная плоскость
RAX Pok
A В
RBX

Мх =1468 кг.см


0 0

Вертикальная плоскость

A B

RА RВУ Sо

0 0

Му=6256,6кг.см





Рисунок 3.1 – Опорные реакции вала
(3.26)
(3.27)
кг
(3.28)
(3.29)
кг
Изгибающие моменты в вертикальной плоскости:
(3.30)
Му1 = 103,5  60,45 = 6256,6 кг см
(3.31)
Му2 = 110,8  56,45 = 6256,6 кг см
Суммарный изгибающий момент в наиболее нагруженном сечении:
(3.32)
кг см
Определим нормальные и касательные напряжения в рассматриваемом се-чении вала при действии максимальных нагрузок:
(3.33)
(3.34)
где - суммарный изгибающий момент, Н м;
- крутящий момент;
- осевая сила;
W и - моменты сопротивления сечения вала при расчете на изгиб и кручение, ;
А – площадь поперечного сечения, .
Определим моменты сопротивления W при изгибе, при кручении и площадь А:
(3.35)
(3.36)
(3.37)
где D – диаметр вала,24 мм.
Подставляя данные в формулы, получим:


Определим частные коэффициенты запаса прочности по нормальным и касательным напряжениям:
(3.38)
(3.39)
где и - пределы текучести стали 12Х18Н10Т, равные 196 МПа.


Определим общий запаса прочности по пределу текучести при совместном действии нормальных и касательных напряжений:

(3.40)
Статическая прочность обеспечена, так как , где =1,7.
Деформация кручения вызывается парой сил, действующих в плоскостях, перпендикулярно оси вала.
Запишем условие прочности при кручении:
(3.41)
где - допустимое сопротивление материала вала.

Условие выполняется, так как , где .

3.3.4 Расчет лопасти на изгиб

Исходные данные:
; ;

Рисунок 3.2- Расчетная схема лопасти на изгиб
Нагрузка Р приложена к центру балки. Произвести расчет балки на прочность [3,18].
Решение:
Определяем опорные реакции от усилия Р.
Составляем уравнение моментов относительно точки А.
SMA= P × l1 + RB × (l1 + l2) = 0 (3.42)
RA = 0; RB = P
(3.43)

Определяем величину моментов и строим эпюру
Момент от силы Р в сечении равен:
(3.44)
из условия прочности:
(3.45)
Определяем момент сопротивления для стали [s] = 510Мпа для легированной стали 12Х18Н10Т
(3.46)
где d – диаметр мешалки, см.

(3.47)
Условие прочности выполняется.

3.3.5 Расчет штифта на срез
Изобразим схему нагружения штифта, покажем действующие силы (рисунок.3.3) [3].

Рисунок 3.3 - Схема нагружения штифта
Для расчета штифта на срез воспользуемся формулой:
(3.48)
где F – нагрузка, приходящая на штифт от действия веса рычага, Н;
d – диаметр штифта, 0,005 м;
K – число плоскостей среза, 2;
n – число штифтов, 4;
[t]ср - допускаемое напряжение среза, 112 МПа.

Условие выполняется, следовательно оставляем штифт диаметром 5 мм.

3.3.6 Расчет сварных соединений
Рассчитаем сварные соединения мешалки (рисунок 3.4)

Рисунок 3.4 – Расчетная схема сварных соединений
Условие прочности:
(3.49)
l - длина всех сварных швов;
S - толщина свариваемого материала, 10 мм.
l = 78,5 4=314 мм.
Р - рассчитывающее усилие, 400 кг.
М - изгибающий момент, .
(3.50)
Поставив значения в формулу (3.49) получим:

При ручной сварке используем электрод Э42.
(3.51)



Условие выполняется.


3.4 Устройство, работа и правила эксплуатации предлагаемой конструкции.
Емкостной аппарат для созревания кисломолочных напитков Я1-ОСВ-1 состоит из ёмкости, электрошкафа, устройства автоматического контроля и управления.
Ёмкость включает корпус, перемешивающее и моющее устройства. Корпус представляет собой цилиндр со сферическим верхним и коническим нижним днищами, которые устанавливаются на регулируемых по высоте опорах. Боковая поверхность корпуса изолирована фенолформальдегидным пенопластом и облицована тонкой коррозионностойкой сталью. Верхнее днище выполнено без изоляции, а у нижнего днища изоляция доходит только до опор с наружной стороны. На верхнем и нижнем днищах имеются проушины, предназначенные для транспортировки ёмкости.
Перемешивающее устройство включает привод и рамную мешалку. Привод смонтирован на верху ёмкости на плите и состоит из электродвигателя и червячного редуктора, соединенных между собой муфтой. В нагревательно-охладительную систему, в виде теплообменной рубашки, подается теплохладоноситель под давлением, обеспечивая хороший теплообмен. Емкостной аппарат Я1-ОСВ-1 снабжены комплексом технических средств автоматизации.
Патрубки наполнения и опорожнения находятся в нижнем коническом днище.
Мешалка устроена таким образом, чтобы не взбалтывала продукта и не резала бы его на пласты и кубики, а равномерно и одновременно перемешивала всю массу продукта. Частичное перемешивание или разрезка сгустка приводит к отделению сыворотки, а взбалтывание мешалкой – к пенообразованию, что в свою очередь вызывает отделение сыворотки.
Автоматическое устройство обеспечивает протекание сквашивания по определённому циклу: перемешивание – покой – перемешивание.
Нормализованное молоко поступает в ёмкость через нижний патрубок, туда же вносится закваска. Заквашенное молоко сквашивается в ёмкости до требуемой кислотности. Полученный сгусток охлаждается в той же ёмкости, при этом через каждые 30 – 40 минут включается мешалка для размешивания и более быстрого его охлаждения. Затем сгусток охлаждается до температуры созревания и остается в ёмкости до полного приготовления продукта. В качестве хладоносителя используют холодную воду, а в качестве теплоносителя – горячую воду.
При эксплуатации двустенных резервуаров необходимо соблюдать следующие условия.

Правила эксплуатации.
1. Смазку производите согласно схеме смазки, в редуктор привода мешалки заливается 0.05 л масла.
Первую замену масла залитого в мотор-редуктор, редуктор мешалки про-изводите через 150 часов работы.
Время от времени следите за уровнем масла в редукторе. Новое масло в пресс-масленки нагнетайте до тех пор, пока старое масло не станет выделяться с обоих концов подшипника.
2. Ежедневно проверяйте, нет ли утечки охлаждающей воды, масла.
3. Не реже одного раза в месяц проверьте и при необходимости подтяните все крепежные соединения.
4 Периодически, но не реже одного раза в месяц проверяйте расстояние между днищем емкости и лопастями мешалки.
4. Постоянно следите за состоянием кинематических пар трения, при не-обходимости замените их.
5. Мойку аппарата производите после окончания работы, но не реже чем через 2 смены при непрерывной работе.
6. Смазку аппарата производить согласно схеме смазки.
Во время эксплуатации разрабатываемого аппарата возникают факторы, которые могут повлиять на безопасность труда обслуживающего персонала.
В аппарате много вращающихся частей и поэтому можно получить раз-личного вида травмы. Аппарат работает с использованием пара и воды. Вслед-ствие утечки в помещении, где эксплуатируется емкость, влажность повышена.
На аппарате большое количество электропроводки, которое при непра-вильной эксплуатации может быть причиной пожара и поражения электриче¬ским током обслуживающего персонала.
Помещение цеха должно быть хорошо оборудовано средствами пожаро-тушения по правилам пожарной безопасности. Можно получить травму и вслед-ствие нечистых полов. Если на пол проливаются продукты, то необходимо сразу же смывать их. На рабочем месте оператора должны быть постелены резиновые коврики. Главным фактором, негативно влияющим на окружающую среду, яв-ляются сточные воды. Только после очистки ее можно сливать в реку.
Меры предосторожности необходимо соблюдать и при разборке оборудо-вания. Во избежание несчастных случаев необходимо соблюдать положение ин-струкции по эксплуатации аппарата.
При монтаже, демонтаже и обслуживании емкости необходимо обесточивать аппарат чтобы избежать случаев поражения электрическим током и возможности случайного включения перемешивающего устройства.
При вводе в эксплуатацию верхней трансформирующейся части мешалки следует следить за деталями крепления, так как случайно оставленные в емкости детали могут привести к выводу из строя конструкции.
Также не допускается колебание мешалки во время работы, это контролируется качественным креплением лопастей к валу.
При соблюдении всех правил эксплуатации оборудования срок службы значительно увеличивается.

Описание технологического процесса производства кефира

http://www.ce-studbaza.ru/werk.php?id=9426

Описание технологического процесса производства кефира

На ОАО «Ардатовский маслодельный завод» производство кефира осуществля-ется резервуарным способом.


- молоко.
- закваска.
- готовый продукт.
- 1 – центробежный насос; 2 – емкость для сырого молока; 3 – уравнительный бачок; 4 – пастеризационно-охладительная установка; 5 – центробежный молокоочистель; 6 – выдерживатель; 7 – емкость для кисломолочных напитков; 8 – автомат фасовочный.
Рисунок 2.1 – Технологическая схема производства кефира резервуарным способом.
Производство кисломолочных продуктов резервуарным способом.
Схема технологического процесса:
Приемка сырья
Охлаждение, резервирование
Подогрев
Очистка, нормализация
Подогрев
Пастеризация
Охлаждение до температуры заквашивания
Заквашивание
Сквашивание
Охлаждение
Созревание
Охлаждение
Разлив
Хранение до реализации
.
Приёмка молока осуществляется согласно ГОСТу 1326488. Молоко охлаж-дают до 4°С с целью предотвращения развития микрофлоры и порчи молока. Ре-зервирование молока не должно продолжаться более 8 часов. Перед очисткой молоко подогревают до 40…45°С. Нормализация молока по массовой доли жира осуществляется в потоке или смешением. Нормализованное молоко гомогенизи-руют с целью исключения отстоя жира, получения продукта с однородной кон-систенцией. Пастеризация проводится при температуре 90...95°С в течение 300 сек.
Пастеризованную нормализованную смесь охлаждают до температуры за-квашивания.22 С. Для кефира, в состав которого входят дрожжи, необходимо со-зревание в течение 10 часов, в течение которых происходит формирование спе-цифического вкуса продукта. Готовый продукт охлаждают до 8…10 С и направ-ляют на разлив.
Хранение кисломолочных напитков проводится при температуре не выше 8 С, не более 36 часов с момента окончания технологического процесса.

Анализ производственной деятельности предприятия ОАО маслодельный завод Ардатовский

http://www.ce-studbaza.ru/werk.php?id=9425

1 Анализ производственной деятельности предприятия ОАО маслодельный завод Ардатовский

1.1 Общая характеристика предприятия
ОАО маслодельный завод Ардатовский существует с 1995г
расположен в городе Ардатов республики Мордовия. г.Ардатов расположен в 110 км от республиканского центра г.Саранска.
Транспортная связь с республиканскими и районными центрами, базами снабжения и сдачи молочной продукции осуществляются по асфальтированной дороге с выходом на асфальтированную магистраль Саранск-Нижний Новгород, что не создает проблем с транспортировкой в осенне-зимний период.
Предприятие имеет глубокую специализацию по производству и переработке молока и молочных продуктов. Сырьевая зона данного предприятия находится на территории Ардатовского района. Предприятие занимается сбором молока у населения и близ лежащих хозяйств. Маслодельный завод выпускает различные виды молочной продукции, которые реализуются в основном в городах и районах республики Мордовия.
ОАО маслодельный завод Ардатовский вырабатывает: масло крестьянское; молоко в пакетах 2,5% жирности; сметану в пакетах 20% жирности; творог обезжиренный; кефир 2,5% жирности.
Мощность маслодельного завода составляет 50 тонн молока в смену, Часть принимаемого молока предприятие отправляет на «Ичалковский» молочный комбинат.
Основное технологическое оборудование состоит из линий производства пастеризованного молока и сливочного масла. Территория маслодельного завода занимает площадь 3 га. Северной стороной примыкает к другим предприятиям г. Ардатова. С восточной стороны ограничена пахотными колхозными землями. Рельеф местности спокойный с пологим уклоном с востока на запад. На расстоянии 15 километров от маслодельного завода пролегает Куйбышевская железная дорого с расположенной на ней железнодорожной станцией Ардатов . . На расстоянии 1 километра от завода проходит высоковольтная линия электропередачи.
Снабжение маслодельного завода электроэнергией осуществляется от государственной линии электропередач. Минимальная потребность в электричестве 226 тыс.кВт.ч. Теплоснабжение осуществляется от котельной, находящейся на территории маслодельного завода. Котельная работает на привозном топливе твердом и жидком. Минимальная потребность в теплоэнергии для производственных нужд 330 кВт. Водоснабжение осуществляется от сети артезианских скважин. Потребность в воде составляет 14.2 м3/ч. Повторного использования воды на заводе нет. На маслодельном заводе принята централизованная система охлаждения с применением блочных фреоновых холодильно-нагревательных машин, Маслодельный завод имеет внутрихозяйственный транспорт. Он применяется для транспортировки молочных продуктов, как внутри хозяйства, так и на дальние перевозки.
Расположение производственных, административных, вспомогательных зданий ОАО маслодельный завод «Ардатовский» показано на рисунке 1.1.
1- производственный корпус; 2- компрессорная; 3 – склад для промежуточного хранения готовой продукции; 4 – склад для длительного хранения готовой продукции; 5 – мойка для автоцистерн; 6 – котельная; 7 – гараж; 8 – склад для хранения химических веществ; 9 – административное здание; 10 – проходная.
Рисунок 1.1 -План-схема ОАО маслодельный завод «Ардатовский» с
расположением производственных, административных и
вспомогательных зданий.

1.2 Анализ показателей производственной деятельности
ОАО маслодельный завод «Ардатовский»
Данные о размерах и условиях производства за три последних года приведены в таблице 1.1.
Анализируя данные таблицы 1.1 можно сделать следующие выводы. Численность работников с 2003 по 2005 годы уменьшилось в 1.1 раз. Выработка продукции в 2004 году по сравнению с 2003 годом выше на 1.02, в 2005 году выработка продукции снижается в сравнении с 2004 годом в 1,17 раза из-за снижения поставок молока.
Динамика объемов производства связана с расходами ресурсов, которые показаны в таблице 1.2.
Таблица 1.1 Размеры и условия производства на ОАО Маслодельный завод «Ардатовский»
Показатели Рассматриваемые годы
2003 2004 2005
Выработка продукции, т:
в том числе:
молоко 2,5%;

масло крестьянское;

сметана 20%;

творог не жирный;

кефир 878

439

166

88

71

114 898

449

170

89

74

116 765

382

145

77

62

99
Таблица 1.2 Основные показатели ресурсоемкости завода
Вид ресурсов Годы
2003 2004 2005

Энергия, кВт.ч

Вода, м3

Стоки, м3

Пар, Гкалл

Труд, чел.ч
756000

320000

202000

259,7

132337
802770

340000

240000

267,8

158485
696423

280000

210000

263,4

129591

Анализируя данные таблицы можно сделать вывод, что в 2005 году по сравнению с 2003 и 2004 годами расход энергоресурсов снизился в 1.31 раза и 1.51 раза соответственно. Расход воды с каждым годом снижаются. Трудоемкость в 2005 году снизилась по сравнению с 2004 годом в 1.19 раза и по сравнению с 2003 годом в 1.12 раза. Количество стоков в 2005 году по сравнению с предыдущими периодом снизилось в 1.05 раза. Расход пара в 2005 году увеличивается по сравнению с 2003 годом и уменьшается по сравнению с 2004 годом в 1.01 раза и 0.98 раза соответственно по годам.

1.3 Анализ кадрового потенциала
Анализ кадрового потенциала приведен в таблице 1.3 из него видна укомплектованность предприятия рабочими кадрами, как среднего уровня, так и наличие работников имеющих высшее образование. Так же можно судить о появлении новых специалистов.

Таблица 1.3 Сведения по кадрам
Показатели Величина по годам

2003 2004 2005
Численность работающих
Специалистов всего
в т.ч.: с высшим образованием
со средним специальным
Принято на работу
Уволено из АО
в т.ч.: по собственному желанию
по инициативе администрации
на пенсию
срений возраст работающих
Учатся в ВУЗах 70
10
9
15
11
16
8
6
2
38
1 65
9
9
15
15
23
11
8
4
35
- 57
7
8
12
19
9
6
5
33
-


Хозяйство полностью укомплектовано специалистами высшего и среднего звена. Наблюдается также тенденция снижения среднего уровня возраста сотрудников, что говорит о пополнении молодыми кадрами. На должном уровне трудовая дисциплина.
Себестоимость произведенной на заводе продукции отражена в таблице 1.4.
Таблица 1.4 Себестоимость произведенной продукции, руб./т.
Статьи затрат Рассматриваемый период
2003 2004 2005
1 2 3 4
Сырье
Доставка 9740,1
362,4 16544,9
745,6 19874,1
832,2

Продолжение таблицы 1.4
1 2 3 4
Вспомогательные затраты
Топливо и электроэнергия
Заработная плата
Отчисления
Амортизация
Общезаводские расходы
Производственная себестоимость
В непроизводственные расходы
Полная себестоимость 141,7
1320,6
125,4
54,5
119,6
1174,4
13038,7
8,7
13047,4 132,1
1878,3
256,2
97,4
223,9
2876,8
22755,2
35,7
22790,9 172,8
2786,4
178,7
68,6
347,2
2452,6
26712,6
38,9
26751,5

Анализируя данные таблицы можно сделать вывод, что в 2005 году себестоимость произведенной продукции по сравнению с 2003 годом увеличилась 2 раза и по сравнению с 2004 годом в 1.2 раза. Увеличение происходит из-за повышения стоимости сырья.

1.3 Характеристика и анализ состояния уровня механизации и
автоматизации производственных процессов на ОАО маслодельный завод «Ардатовский»
На ОАО маслодельный завод «Ардатовский» имеющиеся технологические линии для выработки молочной продукции автоматизированы и снабжены необходимыми приборами автоматического осуществления контроля и регулирования ряда параметров технологического процесса. Автоматизация технологических процессов по обработке молока и ее уровень приведен в таблице 1.5.

Таблица 1.5 Уровень автоматизации технологических процессов по
обработке молока, производства молочных продуктов
Схема автоматизации процесса Уровень автоматизации
Приемка молока из автомолцистерн


Промежуточное хранение молока



Тепловая обработка молока в пла-стинчатых пастеризаторах

Производство масла методом сбива-ния



-Дистанционное управление работой насо-сов, пластинчатого охладителя и резервуа-ров молока.
-Дистанционное и промежуточное управ-ление операциями накопления и опорож-нения резервуаров, работой мешалок, контроль температуры.
-Контроль температуры нагревания молока и автоматическое поддерживание заданной температуры.
-Автоматический контроль температуры пастеризации сливок, дистанционное управление работой клапана возврата и электродвигателей, контроль температуры масла на трубопроводе между цилиндрами и на выходе масла из маслообразователя.


В целом по заводу механизация технологических процессов соответствует коэффициенту 0.60.
Механизация транспортировки готового продукта из основного цеха на склад частичная. В настоящее время транспортировка молочных продуктов с места фасовки транспортируются рабочими при помощи четырех колесной тележки. Рационально запланированная механизация и автоматизация обеспечивает достижения высоких технико-экономических показателей.

1.4 Технико-экономический анализ традиционных отечественных и зарубежных технологий производства кисломолочных продуктов
Кисломолочные напитки вырабатывают двумя способами: термостатным и ре-зервуарным способом. Производство кисломолочных продуктов резервуарным способом [15].
Схема технологического процесса:
Приемка сырья
Охлаждение, резервирование
Подогрев
Очистка, нормализация
Подогрев
Гомогенизация
Пастеризация
Охлаждение до температуры заквашивания
Заквашивание
Сквашивание
Охлаждение
Созревание (или без созревания)
Охлаждение
Розлив
Хранение до реализации
Описание технологического процесса
Приёмка молока осуществляется согласно ГОСТу 1326488. Молоко охлаждают до 4°С с целью предотвращения развития микрофлоры и порчи молока. Резервирование молока не должно продолжаться более 8 часов. Перед очисткой молоко подогревают до 40…45°С. Нормализация молока по массовой доли жира осуществляется в потоке или смешением. Нормализованное молоко гомогенизируют с целью исключения отстоя жира, получения продукта с однородной консистенцией. Пастеризация проводится при температуре 90...95°С в течение 300 сек. Пастеризованную нормализованную смесь охлаждают до температуры заквашивания.22 С Заквашивание осуществляется специально подобранными заквасками из термофильных или мезофильных молочнокислых бактерий, бифидобактерий. В зависимости от вида продукта и закваски продолжительность сквашивания составляет 3…12 часов, температура сквашивания - 20…43°С. Для кефира, в состав которого входят дрожжи, необходимо созревание в течение 10-12 часов, в течение которых происходит формирование специфического вкуса продукта. Готовый продукт охлаждают до 8…10 С и направляют на разлив.
Хранение кисломолочных напитков проводится при температуре не выше 8 С, не более 36 часов с момента окончания технологического процесса.




1-установка для растворения сухого молока; 2-емкость для нормализованной смеси; 3-центробежный насос; 4-балансировочный бачок; 5-пастеризационно-охладительная установка; 6-центробежный молокоочиститель; 7-гомогенизатор; 8-выдерживатель; 9 и 14-емкости для кисломолочных напитков; 10-заквасочник; 11-насос-дозатор; 12-винтовой насос; 13-пластинчатый охладитель; 15-автомат для фасования в бумажные пакеты; 16- автомат для фасования в бутылки.
Рисунок 1.1 Схема технологической линии производства кисломолочных на-питков резервуарным способом
При производстве термостатным способом процесс сквашивания осуществля-ется в потребительской таре в термостатной камере. Продукты, вырабатываемые термостатным способом, имеют ненарушенный сгусток.
Технологический процесс производства кисломолочных напитков термостатным способом осуществляется в следующей последовательности:
Производство кисломолочных продуктов термостатным способом.
Схема технологического процесса:
Приемка сырья
Охлаждение, резервирование
Подогрев
Очистка, нормализация
Подогрев
Гомогенизация (не является обязательной при данном способе производства)
Пастеризация
Охлаждение до температуры заквашивания
Заквашивание
Перемешивание
Разлив в тару
Сквашивание в термостатной камере
Охлаждение
Созревание (или без созревания)
Хранение до реализации
Технологическая схема производства кисломолочных напитков термостатным способом представлена на рисунке 1.2
Описание технологического процесса.
Молоко после пастеризации охлаждается до температуры заквашивания, по-ступает в резервуар вместе с закваской. Смесь тщательно перемешивается мешал-кой 15-20 мин. и поступает на линию розлива. Время розлива одного резервуара не должно превышать 30 мин. Разлитая и укупоренная заквашенная смесь посту-пает в термостатную камеру, температура воздуха в которой поддерживается на уровне температуры сквашивания определенного кисломолочного продукта.
Окончание сквашивания определяется по кислотности и плотности сгустка.
Упакованный продукт поступает в холодильную камеру с температурой 6…80С, где охлаждается при этой температуре. При необходимости продукт здесь же и созревает.


1-емкость для сырого молока; 2-насос; 3-балансировочный бачок; 4-пастеризационно-охладительная установка; 5-пульт управления; 6-возвратный клапан; 7-сепаратор-нормализатор; 8-гомогенизатор; 9-емкость для выдерживания молока; 10-емкость для заквашивания молока; 11-машина для фасования молока; 12-термостатная камера; 13-холодильная камера; 14-камера хранения готовой продукции.
Рисунок-1.2 Схема технологической линии производства кисломолочных на-питков термостатным способом
Отобранное в соответствии с ГОСТ 13264-88 сырье нормализуют по массовой доле жира и сухих веществ.
Сравнение резервуарного и термостатного способа производства.
Резервуарный способ более экономичен. Он исключает наличие больших площадей под термостатные и хладостатные камеры, снижается доля ручного труда, большая возможность автоматизировать и механизировать процесс.
При резервуарном способе увеличивается съем продукции с 1 м кв. площади, сокращаются расходы на выработку готового продукта. Но при резервуарном способе процесс гомогенизации является обязательным, что подразумевает большие энергозатраты. Гомогенизация обязательна в виду того, что сквашивание производится в больших емкостях и необходимо предотвратить отстой жира. Кроме того, гомогенизация позволяет несколько увеличить вязкость готового продукта, что важно, т.к. при данном способе производства продукт имеет нарушенную консистенцию из-за перекачивания сгустка насосами на розлив.
При термостатном способе производства процесс гомогенизации не требуется, готовый продукт имеет ровный плотный сгусток и однородную гомогенную консистенцию

1.5 Характеристика и сравнительные оценки конструкций емкостей для кисломолочных напитков
В настоящее время промышленность выпускает множество различных емкостей, резервуаров, а также танков различной вместимости для кисломолочных напитков. Они различаются видом перемешивающего устройства, видом тепло- и хладоносителя, формой корпуса и другими конструктивными параметрами [2,15].
1 – привод; 2 – люк; 3 – стенка рабочего резервуара; 4,8 – лопасти мешалки; 5 – вертикальная лопасть мешалки; 6 – кожух; 7 – рубашка танка; 9 – кран; 10 – оросительный коллектор; 11 – вал мешалки; 12 – опора; 13 – штуцер для подачи раствора.
Рисунок 1.3 – Двустенный танк VNBS – 100


Резервуар состоит из вертикального цилиндра закрытый сверху и снизу коническими приваренными крышками. Мешалка рамного типа с тремя лопастями, расположенными под углом 45 к горизонтальной плоскости. Лопасти находятся в верхней и нижней частях рамы мешалки, что позволяет перемешивать жидкость по всей высоте резервуара. На валу по всей его длине закреплена пластина, что позволяет интенсивно перемешивать столб жидкости в центре резервуара. Мешалка вращается вправо и влево. Направление её вращения изменяется автоматически.

1 – стенка внутреннего резервуара; 2 – стенка кожуха; 3 – крестообразная мешалка; 4 – привод мешалки; 5 – люк; 6 – грибковый клапан для спуска готового продукта и наполнения молоком; 7 – штуцер для подачи хладагента; 8 – штуцер переливной трубы; 9 – штуцер для подачи раствора в моющее устройство; 10 – пробный средний краник; 11 – изоляция; 12 – штуцер для датчика верхнего уровня; 13 – штуцер для удаления охлаждающей воды.
Рисунок 3.2 – Резервуар для охлаждения и созревания кисломолочных напитков. Он представляет собой цилиндр из нержавеющей стали, закрытый сверху и снизу приваренными сферическими днищами и смонтированный вертикально на ножках. В качестве хладагента используется вода. В рабочем резервуаре смонтирована мешалка, состоящая из двух горизонтальных лопастей, расположенных в верхней и в нижней частях резервуара. Они развернуты одна к другой под углом 90 .Лопасти мешалки соединены между собой тягами. При вращении мешалки жидкость, находящаяся в резервуаре движется снизу вверх и по окружности в сторону вращения, что способствует плавному перемешиванию продукта.

1 – привод; 2 – светильник; 3 – мешалка; 4 – изоляция; 5 – кожух; 6 – рубашка; 7 – дно облицовки; 8 – воротник ножки; 9 – плита; 10 – воротник патрубка; 11 – кран проходной; 12 – воротник крана пробного; 13 – кран пробный, средний; 14 – окно смотровое; 15 – гайка штуцера.
Рисунок 1.3 – Резервуар для кисломочных продуктов.
Конструкция данного резервуара отличается от описанных ранее резервуаров, верхнее днище у них коническое, а нижнее – плоское с наклоном в сторону штуцера. Продукт в резервуаре охлаждается с помощью оросительной системы.
Приведенные выше резервуары имеют принципиальное различие в конструкции формы днища, а также вида перемешивающего устройства.
Днища конической формы просты в изготовлении, способствуют более эффективному перемешиванию по сравнению с резервуарами, имеющими плоское днище. Однако они уступают резервуарам со сферическим днищем, которые обладают наиболее эффективными свойствами перемешивания.
Также емкости различаются видами конструкций для теплообмена, емкости имеющие в своей конструкции змеевики затрачивают мощность в двое больше чем аппараты с рубашкой. Однако коэффициент теплоотдачи в таких емкостях в два раза выше.
Вид перемешивающего устройства также играет значительную роль в процессе перемешивания. Существуют лопастные перемешивающие устройства, якорные, рамные и другие. Лопастные мешалки наиболее эффективно перемешивают, не разрезая сгусток и не вспенивая продукт. Недостатком данного вида мешалок является их энергоемкость и металлоемкость, что не приемлемо для нашего предприятия. Исходя из технических возможностей нашего предприятия целесообразно применить рамную мешалку, так как ее возможно изготовить в условиях ремонтной мастерской хозяйства. Она имеет хорошие технические данные, проста в эксплуатации, имеет низкую металлоемкость и меньше потребляет электроэнергию.

Анализ производственной деятельности предприятия ОАО маслодельный завод «Ардатовский» с разработкой перемешивающего устройства емкости для созревания кефира

http://www.ce-studbaza.ru/werk.php?id=9424

СОДЕРЖАНИЕ
стр.
Введение……………………………………………………………………….……
1 Анализ производственной деятельности предприятия ОАО маслодельный завод «Ардатовский»………………………...
1.1 Общая характеристика предприятия………...
1.2 Анализ показателей производственной деятельности ОАО маслодельный завод «Ардатовский»……………………………………………………………
1.3 Характеристика и анализ состояния уровня механизации и
автоматизации производственных процессов на ОАО маслодельный завод «Ардатовский»
1.4 Технико-экономический анализ традиционных отечественных и зарубежных технологий производства кисломолочных напитков………...…
1.5 Характеристика и сравнительная оценка конструкций емкостей для кисломолочных напитков………………………………………………………..
2.Расчет и проектирование поточно-технологической линии производства кефира…………………………………………………………………………….
2.1 Продуктовый расчет……………………………………………………………..
2.2 Описание технологического процесса производства кефира…………………
2.3 Расчет и подбор технологического оборудования……………………………..
2.4 Разработка объемно-планировочных решений и определение необходимой производственной площади…………………………………………………….
2.5 Определение потребности в воде, паре, электроэнергии…………...
2.6 Определение численности обслуживающего персонала……………………...
2.7 Правила монтажа и эксплуатации технологического оборудования…………
3 Разработка и расчёт перемешивающего устройства емкости для созревания кефира……………………………………………………………….
3.1 Требования, предъявляемые к перемешивающим устройствам……………….
3.2 Обоснование и краткое описание конструкции перемешивающего устройства……………………………….………………
3.3 Расчет основных элементов конструкции………………………………………
3.3.1 Подбор электродвигателя
3.3.2 Расчёт перемешивающего устройства
3.3.3 Расчет вала
3.3.4 Расчет лопасти на изгиб
3.3.5 Расчет штифта на срез
3.3.6 Расчет сварных соединений
3.4 Устройство, работа и правила эксплуатации предлагаемой конструкции…….
4.Безопасность жизнедеятельности и экология………………………………….
4.1 Безопасность проекта……………………………………………………………...
4.2 Экологичность проекта……………………………………………………………
5 Экономическая эффективность проекта……………………………………….
Выводы и предложения……………………………………………………………..
Литература……………………………………………………………………………
Приложения…………………………………………………………………………..

Схема размещения оборудования (зона монтажа-демонтажа шин)

http://www.ce-studbaza.ru/werk.php?id=9423

Схема размещения оборудования (зона монтажа-демонтажа шин)

Муфта (сборочный узел)

http://www.ce-studbaza.ru/werk.php?id=9422

Муфта (сборочный узел)

Пробка

http://www.ce-studbaza.ru/werk.php?id=9421

Пробка

Втулка

http://www.ce-studbaza.ru/werk.php?id=9420

Втулка

Бак

http://www.ce-studbaza.ru/werk.php?id=9419

Бак

Полумуфта

http://www.ce-studbaza.ru/werk.php?id=9418

Полумуфта

Штуцер

http://www.ce-studbaza.ru/werk.php?id=9417

Штуцер