вторник, 30 января 2018 г.

Безопасность жизнедеятельности и охрана окружающей среды при работе за станком

http://www.ce-studbaza.ru/werk.php?id=9310

6 Безопасность жизнедеятельности и охрана окружающей среды

6.1 Безопасность жизнедеятельности
На большинстве предприятий технологические процессы зачастую сопровождаются значительными уровнями шума, вибрации, ультра- и ин-фразвука, жесткими и стабильными параметрами микроклимата, большинст-во операций производится в условиях высокого зрительного напряжения, за-пыленности и загазованности.
На современном этапе в нашей стране стратегическим направлением развития охраны труда являются создание безопасной техники и технологии, комплексная механизация и автоматизация производства и на этой основе обеспечение на всех предприятиях условий, исключающих производственный травматизм, профессиональные заболевания и тяжелый физический труд.
Особое внимание следует обращать на исследования влияния условий работы за пультами управления, а также на решение таких проблем, как уменьшение монотонности труда и нагрузок на нервную систему в процессе труда. В связи с этим необходима разработка научно обоснованных режимов труда и отдыха на предприятиях. Главная задача в области охраны труда в настоящий период заключается в максимальном устранении опасных и вредных производственных факторов, уменьшении численности работающих в этих условиях, создании здоровых, безопасных и комфортных условий труда на рабочих местах и на этой основе снижении профессиональной за-болеваемости и производственного травматизма.
Безопасность жизнедеятельности – это система законодательных актов и мероприятий, обеспечивающих безопасность работающих во время их производственной деятельности.
6.1.1 Анализ опасных и вредных факторов, действующих в цехе и влияющих на условия труда
Произведем анализ потенциально опасных и вредных производствен-ных факторов, присутствующих на участке для обработки ступиц грузовых автомобилей. Рассмотрим их в соответствии с ГОСТ 12.0.003-74 ССБТ.
1 На территории цеха применяется общеобменный тип вентиляции, действие которой основано на разбавлении загрязненного, нагретого, влаж-ного воздуха помещения свежим воздухом до предельно допустимых норм. Данная система в соответствии санитарными норами не обеспечивает под-держание необходимых параметров воздушной среды во всем объеме поме-щения, что может быть связано с поломкой элементов системы вентиляции.
2 В течение смены в цехе берутся две пробы воздуха, что не удовле-творяет требованиям ГОСТ 12.1.005-88 ССБТ, согласно которому число проб должно быть не менее пяти за смену.
3 По данным цеха температура воздуха в холодный период составляет 18-19˚С, относительная влажность 50-60%, скорость движения воздуха 0,2 м/с, что соответствует требованиям ГОСТ 12.1.005-88 ССБТ.
4 Погрешность приборов измеряющих температуру, влажность и V(скорость) воздуха соответствует ±0,5ºC; ±5%; 0,1 м/с. Параметры изме-ряющих приборов соответствуют ГОСТ 12.1.005-88 ССБТ.
5 В цехе используются комбинированная система освещения, по норме СНиП 23-05-95 освещенность создаваемая общим освещением должна быть не менее 150 лк. По результатам замеров освещенность на некоторых участ-ках составляет 125 лк, что связано с несвоевременной заменой вышедших из строя светильников и из-за загрязненности световых проемов.
6 Эквивалентный уровень звука на рабочем месте составляет 59 ДБл, что удовлетворяет ГОСТ 12.1.003–83, который регламентирует максимально
допустимый уровень звука 85 ДБл. Данные по уровню шума взятые из пас-порта радиально-сверлильного станка 2М55, удовлетворяют ГОСТ 12.1.003-83.
7 К оборудованию подведены опасные напряжения 110, 220 и 380 В, поэтому все работники цеха проходят, обязательный инструктаж как того требует ГОСТ 12.1.019– 79.
8 В соответствии с ГОСТ 12.1.019–79 для обеспечения электробезопас-ности, в цехе применяются в сочетании друг с другом следующие техниче-ские способы и средства:
а) защитное заземление
б) защитное зануление
в) защитное отключение
г) оградительные устройства
9 В соответствии с ГОСТ 12.1.019–79 к работе в электрических уста-новках допускаются только те лица, которые прошли инструктаж и обучение по безопасным методам труда.
10 Органы управления радиально-сверлильного станка располагаются на высоте 650-1650 мм от уровня пола, что входит в диапазон регламентиро-ванный ГОСТ 12.2.009–99.
11 В электрической схеме станка предусматривается аварийная блоки-ровка, что соответствует ГОСТ 12.2.009–99.
12 По данным паспорта станка установлено, что он имеет орган ава-рийного отключения, что соответствует ГОСТ 12.2.009–99.
13 Движение людей и транспорта в цехе осуществляется по специаль-ным проходам и проездам. Согласно ГОСТ 12.3.025–80. они должны быть
разграничены линиями белого цвета шириной 100 мм.
14 Радиально-сверлильный станок работает с подачей СОЖ в зону ре-зания, тем самым вымывается пыль и стружка, на станке установлены за-щитные кожухи-экраны.
15 Станок не работает с большими усилиями, а скорости резания не превышают рекомендуемые. Следовательно шум и вибрация минимальны.
16 Все станки заземлены. В случае поломки станок сразу полностью обесточивается.
17 Обработка материалов производится с применением смазочно-охлаждающих жидкостей, таких как эмульсол ЭГТ ТУ 38.101.-149-96, новое масло с активными добавками ИГП-30 и некоторые другие, которые не со-держат вредных для человека химических добавок. Состав и концентрация растворов контролируется заводской лабораторией.
18 Физических перегрузок не наблюдается, так как имеются специаль-ные тележки и другие транспортные средства для межоперационного пере-мещения грузов. Но наблюдается монотонность труда.
6.1.2 Мероприятия по улучшению условий труда и повышения безопасности работы на радиально-сверлильном станке с ЧПУ
1 Монтаж и ремонт: Станок должен быть установлен на прочном осно-вании или фундаменте, тщательно выверен и надежно закреплён. Перед ре-монтом оборудование должно быть отключено от электросети, мотор вы-ключен. Отключение и подключение оборудования к электросети после его ремонта должно производиться только электромонтером и после установки на места всех ограничительных и предохраняющих устройств.
2 Оградительные и предохранительные устройства: Движущиеся части станка и механизмов, которые могут являться причиной травматизма рабо-чих, должны быть укрыты соответствующими защитными ограждениями. Конструкции ограничительных устройств должны быть достаточно прочны-ми, надежно крепиться, не мешать производственной работе, уборке и на-ладке станка. Внутренние поверхности защитных дверец, крышек, огражде-ний должны быть окрашены в ярко-красный цвет, сигнализирующий об опасности в случае их открытия. Все дверцы и съемные крышки должны иметь устройства, не допускающие самопроизвольного открытия. Станок оснащен экранами, надежно защищающими работающих от отлетающей стружки и осколков случайно поломавшегося инструмента или брызг охла-ждающей жидкости. Для наблюдения за процессом обработки в экранах должны быть сделаны соответствующие смотровые окна из прочного мате-риала.
3 Приспособления для установки и закрепления заготовок (деталей): Конструкция всех приспособлений для закрепления обрабатываемых деталей и инструмента должна обеспечивать надежное их закрепление и исключать возможность самоотвинчивания приспособления во время работы. Для исключения соприкосновения рук рабочего с движущимися приспособле-ниями и инструментом при установке заготовок и снятии деталей должны применяться автоматические устройства.
4 Электромагнитные патроны, а также гидро-, пневмо- и электрифици-рованные зажимные приспособления, кроме ограждений, должны быть обо-рудованы блокирующими устройствами для автоматического выключения станка в случаях неожиданного прекращения подачи электрического тока. Органы управления зажимными приспособлениями располагаются так, чтобы исключить возможность случайного включения или выключения их.
5 Транспортные устройства для передачи с одного места на другое за-готовок (деталей) должны быть оборудованы ограждениями, исключающими возможность падения транспортируемых предметов. Станки, при работе на которых вспомогательные операции должны производится при остановке главного движения (шпинделя), должны быть оснащены быстродействую-щими тормозными устройствами.
6 Уборка стружки от станка должна быть максимально механизирована. Конфигурация станка и их элементов должна способствовать отводу стружки и быть удобной для очистки от пыли, масла и других загрязнений.
6.1.3 Электрические испытания общих и индивидуальных защит-ных средств как мера предупреждения электрического травматизма в проектируемом цехе
К защитным мерам то опасности прикосновения к токоведущим частям электроустановок относятся: изоляция, ограждение, блокировка, пониженные напряжения, электрозащитные средства, сигнализация и плакаты. Надёжная изоляция проводов от земли и корпусов электроустановок создаёт безопасные условия для обслуживающего персонала. Основная характери-стика изоляции – сопротивление.
Защитное заземление предназначено для устранения опасности пора-жения электрическим током в случае прикосновения к корпусу и к другим нетоковедущим частям электроустановок, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам (рис. 6.1). При этом все металлические нетоковедущие части электроустановок 1 соединяются с землёй с помощью заземляющих проводников 2 и заземлителя 3.
Заземлитель – это проводник или совокупность металлически соеди-ненных проводников, находящихся в соприкосновении с землёй или её экви-валентом. Заземлители бывают искусственные, предназначенные исключи-тельно для целей заземления, и естественные – находящиеся в земле метал-лические предметы иного назначения. Для заземления оборудования в пер-вую очередь используют естественные заземлители: железобетонные фунда-менты, а также расположенные в земле металлические конструкции зданий и сооружений.
Защитное заземление применяют в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением свыше 1000 В как с изоли-рованной, так и с заземлённой нейтралью. С помощью защитного заземления уменьшается напряжение на корпусе относительно земли до безопасного значения, следовательно, уменьшается и сила тока, протекающего через тело человека. На схеме защитного заземления (рис. 6.1) показано, что напряже-ние, приложенное к телу человека в случае прикосновения к оборудованию, можно снизить, уменьшая сопротивление заземляющего устройства. Соглас-но ПУЭ сопротивление заземления в электроустановках до 1000 В не должно превышать 4 Ом.

Рисунок 6.1 Схема защитного заземления в однофазной
двухпроводной сети
Наряду с применением технических методов и средств электробезо-пасности важное значение для снижения электротравматизма имеет чёткая организация эксплуатации электроустановок и электросетей, профессио-нальная подготовка работников, сознательная производственная и трудовая дисциплина.
6.1.4 Расчет защитного заземления
При расчёте заземления необходимо определить основные параметры: число, размеры и размещение одиночных заземлителей и заземляющих про-водников, при которых напряжения прикосновения и шага при замыкании фазы на заземлённый корпус не превышают безопасных значений. К исход-ным данным для расчёта заземления относятся: характеристика электроуста-новки – тип установки, виды оборудования, рабочие напряжения, способы заземления нейтрали трансформаторов и генераторов и т. п.; план электро-оборудования с указанием основных размеров и его размещения; формы и размеры электродов, из которых предполагается соорудить проектируемый групповой заземлитель, а также глубина погружения их в землю: данные из-мерений удельного сопротивления грунта на участке, где намечается соору-жение заземлителей, характеристика климатической зоны; данные о естест-венных заземлителях: какие сооружения могут быть использованы для этой цели и сопротивление их растеканию тока; расчётный ток замыкания на зем-лю; расчётные значения допустимых напряжений прикосновения и шага и время действия защиты, если расчёт производится по напряжениям прикос-новения и шага.
1 Определяем допускаемое сопротивление растекания тока Rд:
Rд = 4 Ом (так как установлено ниже 1000В)
2 Определяем удельное сопротивление грунта:
Ом (6.1)
где Ом∙см – удельное сопротивление грунта, измеренное прибором;
- коэффициент, зависящий от времени года
3 Находим расстояние t от поверхности земли до середины заземлителя (при принятом его размере и глубине заложения):
м (6.2)
где t0=0,7 м - глубина заложения заземлителя;
l=2,6 м - длина заземлителя
4 Сопротивление растеканию тока одиночного заземлителя:
Ом (6.3)
5 Вычислим потребное число вертикальных заземлителей:
(6.4)
где - коэффициент экранирования;
Ом – сопротивление растеканию тока одиночного заземлителя;
Ом – допускаемое сопротивление заземляющего устройства
6 Расстояние между заземлителями:
м (6.5)
где l=2,6 м – длина заземлителя
7 Определяем коэффициент экранирования η:
η=0,73
8 Вычислим необходимое количество заземлителей с учетом коэф-фициента экранирования:
(6.6)
9 Расчетное сопротивление растеканию тока при принятом числе за-землителей:
(6.7)
Ом (6.8)
10 Длина соединительной полосы:
м (6.9)
11 Сопротивление растекания тока в соединительной полосе:
Ом (6.10)
12 Коэффициент экранирования для соединительной полосы:

13 Расчетное сопротивление растеканию тока в соединительной по-лосе с учётом коэффициента экранирования:
Ом (6.11)
14 Общее расчетное сопротивление растекания тока заземляющего устройства:
Ом (6.12)
15 Сечение магистральной шины внутри контура: 4,5 мм. Сечение проводника: 1,5 мм2
Вывод: Проанализировав все выше указанные расчёты и особенности оборудования, я прихожу к выводу, что рассчитанное заземляющее устрой-ство соответствует условиям ГОСТ 12.1.030-81 «Электробезопасность. За-щитное заземление, зануление.» и применимо в данных условиях производ-ства.
6.1.5 Анализ состояния пожарной безопасности в инструментальном цехе.
Для оценки пожарной безопасности в цехе в первую очередь, следует отметить, что в соответствии со СНиП 2.01.02-85, он относится к категории «Д». То есть это производство, в котором обрабатываются негорючие веще-ства и материалы в холодном состоянии (цехи холодной обработки материа-лов и т.д.) Категория производства по пожарной опасности в значительной степени определяет требования к зданию, его конструкциям и планировке, организацию пожарной охраны и ее техническую оснащенность, требования к режиму и эксплуатации. В данном случае конструкция здания из железобе-тона с облицовочными несущими перекрытиями, по действующим нормати-вам относится к 10-ой степени огнестойкости. В качестве противопожарных преград предусмотрены запасные выходы, имеются ответственные за по-жарную безопасность.
Размещение технологического оборудования и его пожарная безопас-ность выполнена в соответствии с требованиями норм.
В системах вентиляции и вытяжки имеются отсекатели пламени, не дающие возможности распространения пламени по этим системам, что отве-чает требованиям СНиП 21-01-97.
Электроустановки выполнены в электрозащитном исполнении.
В цехе имеются порошковые огнетушители ПС и ПФ; углекислотные ручные ОУ-2А, ОУ-8, передвижные ОУ-80, пожарные щиты и ящики с пес-ком.
Также в цехе имеются специальные места для курения.
Для обеспечения в цехе пожарной безопасности необходимо:
1 Постоянно содержать территорию предприятия в чистоте и своевре-менно очищать от горючих отходов, мусора, тары, сухой травы. Металличе-ская стружка, промасленные отходы должны храниться в специально отве-денных местах и таре. Проезды, подъезды и проходы к зданиям, пожарным водоисточникам, а также подступы к стационарным пожарным лестницам и пожарному инвентарю должны быть всегда свободными.
2 Дополнительно оборудовать места для курения на территории цеха и ужесточить контроль за соблюдением требований пожарной безопасности на рабочих места.
3 При проведении работ по замене кровли помещения цеха заменить материалы на основе гидрола, материалами на полимерной основе, которые менее горючи и имеют больший срок службы.
4 Оборудовать цех станцией газопожаротушения и установить в пожа-роопасных помещениях тепловые и дымовые датчики.
5 Оборудовать помещение цеха дымовыми люками, как того требует СНиП 502.
6.1.6 Выводы
1 Исходя из характеристик цеха и рабочего места, можно сделать вы-вод, что основными направлениями улучшения условий труда, которым сле-дует уделить наибольшее внимание, является электробезопасность.
2 При рассмотрение пожарной безопасности цеха, наиболее важным и необходимым мероприятием является дополнительное оборудование места для курения на территории цеха и ужесточение контроля за соблюдением требований пожарной безопасности на рабочих места.
6.2 Охрана окружающей среды
6.2.1 Актуальность очистки сточных вод промышленных пред-приятий
При использовании воду, как правило загрязняют, а затем сбрасывают в водоемы. Внутренние водоемы загрязняются сточными водами различных отраслей промышленности, а также поверхностными стоками. Химические загрязнения поступают в водоемы с промышленными, поверхностными и бытовыми стоками. К ним относятся: нефтепродукты, тяжелые металлы и их соединения, минеральные удобрения, пестициды, моющие средства. Наибо-лее опасны свинец, ртуть, кадмий.
Также в результате сбрасывания в реки загрязняющих веществ в при-родных водах уменьшается количество растворенного кислорода, ухудша-ются условия разложения органических веществ, идет интенсивное их нако-пление, увеличиваются концентрации азота, фосфора, различных металлов, хлорорганических и других вредных соединений.
В реки и другие водоемы ежегодно сбрасывается свыше 450 км3 сточ-ных вод. Примерно половина из них перед сбросом подвергается искусст-венной очистке. А чтобы природные воды сохранили способность к само-очищению, необходимо не менее чем десятикратное разбавление сточных вод. Следовательно, они загрязняют огромную массу естественной воды. Поэтому всемерное сокращение и полное прекращение сброса сточных вод в водоемы – одно из основных направлений в охране водных ресурсов.
В результате антропогенной деятельности многие водоемы мира и на-шей страны крайне загрязнены. Уровень загрязненности воды по отдельным ингредиентам превышает 30 ПДК.
Опасны не только первичные загрязнения поверхностных вод, но и вторичные, образовавшиеся в результате химических реакций веществ в водной среде.
Загрязнение пресных вод в наши дни стало столь значительным, что вызывает тревогу во многих странах мира. Причины загрязнения рек и озер – все то же интенсивное развитие промышленности и рост населения. Как следствие этого, значительно увеличился объем промышленных и бытовых сточных вод.
Среди промышленных опасны нефтяные продукты. Они попадают в реки со стоками нефтедобывающих, нефтеперерабатывающих, автомобиль-ных и железнодорожных предприятий, с транспортных и нефтеналивных су-дов. На водной поверхности они образуют пленку, препятствующие проник-новению кислорода в воду. Кислородное голодание приводит многие виды рыб к гибели. По этой причине уловы во многих внутренних водоемах мира сильно снижаются.
Для спуска производственных и хозяйственных вод предусматривают канализационные устройства. Канализация состоит из внутренних канализа-ционных устройств, расположенных в здании, наружной канализационной сети (подземных труб, каналов, смотровых колодцев); насосных станций, напорных и самотечных коллекторов, сооружений для очистки, обезврежи-вания и утилизации сточных вод; устройства их выпуска в водоем.
Все сточные воды предприятия должны подвергаться очистке от вред-ных веществ перед сбросом в водоем. Для обеспечения этих требований применяются механические, химические, биологические и комбинированные методы очистки. Вид очистных сооружений выбирают в зависимости от ко-личества и характеристики, поступающих на очистку сточных вод, а также требуемой степени их очистки, метода использования их осадка и от других местных условий.
Однако только очистными сооружениями полностью предотвратить за-грязнение водоемов не удается. Необходимо широкое внедрение оборотного водоснабжения в промышленности (замкнутый цикл). Суть этой технологии, на которую в нашей стране уже перешло много предприятий, заключается в повторном использовании воды в производстве. Благодаря этому заметно снижается расход ее на 1т продукции.
6.2.2 Анализ и мероприятия по защите окружающей среды
При анализе факторов, несущих основную потенциальную опасность загрязнения окружающей среды в данном цехе, наиболее актуальными яв-ляются следующие:
1 на сверлильном участке образуется стружка, для удаления и утилиза-ции, которой в цехе имеется специальная система;
2 в процессе работы оборудования образуется аэрозоль минеральных масел и частиц СОЖ, который через систему вентиляции попадает в атмо-сферу;
3 в процессе работы цеха промышленные воды загрязняются раз-личными химическими веществами и мелкодисперсными твердыми части-цами;
4 при процессе сверления образуется стружка, которая ссыпается в специальную тару (контейнер), после чего она оттуда изымается и проходит следующие стадии: промывку от остатков СОЖ, сушку и далее перерабаты-вается.
Ввиду этого необходимо уделить особое внимание промывке стружки, то есть очистки её от масел. Для этого используют очистное устройство для очистки сточных вод от масляной основы.
6.2.3 Разработка фильтра-сепаратора для очистки сточных вод от масляной основы
Освобождение сточных вод от загрязнения – сложное производство. В нем, как и в любом другом производстве, имеются сырье (сточные воды) и готовая продукция (очищенная вода).
Методы очистки сточных вод можно разделить на механические, фи-зико-химические и биологические. Когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называются комбинирован-ным. Применение того или иного метода в каждом конкретном случае опре-деляется характером загрязнения и степенью вредности примесей.
При выборе схемы станции очистки и технологического оборудования необходимо знать расход сточных вод и концентрацию содержащихся в них примесей, а также допустимый состав сточных вод, сбрасываемых в водоемы. Допустимый состав сточных вод рассчитывают с учетом «Правил охраны поверхностных вод». Эти правила предназначены для предупреждения избыточного загрязнения сточными водами водных объектов.
В настоящее время для очистки сточных вод от маслопродуктов хоро-шо используют фильтры с пенополиуретаном в качестве фильтровального материала. Пенополиуретаны, обладая большой маслопоглощательной спо-собностью, обеспечивают эффективность очистки до 0,97…0,99 при скоро-сти фильтрования до 0,01 м/с. Насадка из пенополиуретана легко регенери-руется механическим отжиманием маслопродуктов.
На рисунке 6.2 представлена схема фильтра-сепаратора с фильтроваль-ной загрузкой из частиц пенополиуретана, предназначенного для очистки сточных вод от маслопроуктов и твёрдых частиц.
Сточную воду по входному трубопроводу 5 подают на нижнюю опор-ную решётку 4.

Рисунок 6.2 – Схема фильтра-сепаратора
Вода проходит через фильтровальную загрузку в роторе 2, верхнюю решётку 4 и очищенная от примесей переливается в приёмный карман 6 и выводится из корпуса 1 фильтра. При концентрации маслопродуктов и твёр-дых частиц до 0,1 кг/м3 эффективность очистки составляет соответственно 0,92 и 0,9; время непрерывной эксплуатации фильтра 16…24 ч. Достоинст-вом данной конструкции являются простота и высокая эффективность реге-нерации фильтра, для чего включают электродвигатель 7. При вращении ро-тора 2 с фильтровальной загрузкой частицы пенополиуретана под действием центробежных сил отбрасываются к внутренним стенкам ротора, выжимая маслопродукты из него, которые поступают затем в карманы 3 и направля-ются на регенерацию. Время полной регенерации фильтра составляет 0,1 ч.

Технологический процесс обработки детали Ступица грузового автомобиля

http://www.ce-studbaza.ru/werk.php?id=9309

2 Технологический процесс обработки детали Ступица грузового автомобиля

2.1 Анализ обрабатываемой детали (ступица грузовых автомобилей)
Автомобильное колесо состоит из пневматической шины, обода, ступицы и соединительного элемента. Обод колес у грузовых автомобилей плоский, имеет два бортовых кольца (рисунок 2.1). Съемное бортовое кольцо неразрезное и закреплено на ободе разрезным замочным кольцом.

Рисунок 2.1 – Колесо автомобиля с плоским ободом
На дисках колес выполнены конические отверстия, которыми колесо устанавливается на шпильки. Гайки колес также имеют конус. Совпадением конусов гаек с конусными отверстиями на дисках обеспечивается точная установка колес (рисунок 2.2).
Ступица колеса является связующим звеном между ободом колеса и тормозным барабаном.

Рисунок 2.2 – Крепление колеса грузового автомобиля
Ступица колеса устанавливается на двух конических роликовых подшипниках и крепятся гайкой, которая затем стопорится и закрывается колпаком.
Крепление обода колеса осуществляется при помощи шпилек, которые запрессованы в отверстиях ступицы, и гаек. Ступица также жестко связана с тормозным барабаном с помощью гаек и болтов. С помощью болтов колпак закрывает ступицу.
При торможении ступица переднего колеса испытывает момент кручения, а также знакопеременные нагрузки, поэтому она должна выполняться из достаточно прочного материала.
2.2 Анализ материала детали
Материал детали - ковкий чугун КЧ-35-10Ф ГОСТ 1215-79. Ковкий чугун в основном является конструкционным материалом, используемый для изготовления мелких тонкостенных отливок (толщина стенок не более 40-50 мм) для сельскохозяйственных машин, автомобилей, тракторов, арматуры, фитингов и других деталей массового производства. Особенно целесообразно применение ковкого чугуна в случае, если деталь трудно отлить из стали, а получить ее обработкой слишком дорого.
Благодаря хлопьевидной форме графита ковкий чугун отличается достаточно высокой прочностью и пластичностью, занимая промежуточное положение между серым чугуном и сталью.
Ковкий чугун ферритного класса обладает следующими повышенными свойствами: пластичностью, сопротивляемостью ударным нагрузкам и однородностью механических свойств по сечению отливок. Однако ковкий чугун обладает более низкими литейными свойствами, чем серый, в частности пониженной жидкотекучестью, большей усадкой и повышенной склонностью к трещинообразованию.
Химический состав ковкого чугуна КЧ-35-10Ф приведён в таблице 2.1.
Таблица 2.1 - Химический состав ковкого чугуна КЧ-35-10Ф
Примерный химический состав, %
С Si Мn Р S Сг
2,4-2,8 0,9-1,4 0,3-0,5 не более 0,18 не более 0,12 не более 0,06

Таблица 2.2 – Физические свойства ковкого чугуна КЧ-35-10Ф
Плотность г/см3 Коэффициент линейного расширения α при температуре до 100°С Теплоёмкость с, кал/(г∙°С) Коэффициент теплопроводности λ, кал/см∙с∙град Электросопротивление ρ, мкОм∙см Максимальная магнитная проницаемость, μ, Гс/Э
7,2-7,4 (10-12) 10-8 0,12-0,13 0,12-0,17 30-55 600-1800

Твердость отливки не более 163НВ.
Относительное удлинение δ=8%.
Сопротивление разрыву 35 кгс/мм2.
2.3 Краткая характеристика существующего уровня технологии
При изготовлении ступицы используется широкий спектр методов технологической обработки детали в автомобилестроении:
- токарная обработка;
- сверление;
- зенкерование;
- развертывание;
- раскатывание.
Базовый технологический процесс обработки ступицы достаточно рационален, однако современное развитие технологии механической обработки позволяет его еще более усовершенствовать.
Станки расположены на участке, с учетом последовательности выполнения технологических операций. Передача детали от операции к операции осуществляется при помощи подвесного грузонесущего конвейера. Загрузка оборудования происходит автоматически. Технологическая оснастка специализированная. Вся токарная обработка происходит на токарных вертикальных 8-ми шпиндельных полуавтоматах.
Ступицы производят в условиях крупносерийного производства. Используемая технология отвечает требованиям, предъявляемых к современному производству
2.4 Обработка конструкции детали на технологичность
Анализ технологичности конструкции детали производится с целью установления уровня её соответствия требованиям наименьшей трудоемкости материалоемкости.
На основании технологического анализа конструкции заданной детали установим, что:
- ступица относится к классу корпуса ;
- заготовку данной детали получают методом литья в песчано-глинистые формы, который позволяет получить точную заготовку с хорошей шероховатостью и с минимальными припусками под механическую обработку;
- все поверхности детали открыты для свободного подвода к ним режущего инструмента;
- конструкция детали позволяет токарную обработку производить на станках полуавтоматах, что повышает точность механической обработки и уменьшает трудоемкость её изготовления;
Технологичность конструкции оценивается несколькими показателями, среди которых коэффициент использования материала и коэффициент унификации конструктивных элементов.
Рассчитаем коэффициент использования материала:
, (2.1)
где MD – масса детали, кг;
MZ – масса заготовки, кг.
КиМ>0,6 - деталь по данному показателю является технологичной.
Рассчитаем коэффициент унификации конструктивных элементов:
, (2.2)
где QYH - число унифицированных конструктивных элементов;
Qy - общее количество конструктивных элементов у детали.
>0,6- изделие считается технологичным.
2.5 Анализ технических условий, предъявляемых к детали
Каждая поверхность детали имеет свои точностные характеристики, свою точность взаимного расположения. Исходя из назначения детали, можно заключить, что цилиндрические отверстия под подшипники, которые являются технологическими базами (7-ой квалитет точности, шероховатость Ra=0,4, допуск овальности и конусности не более 0,02 мм.) являются основными, так как с помощью этих поверхностей ступица ориентируется на поворотной цапфе. Биение малого цилиндрического отверстия под подшипник относительно баз Е, Ж (цилиндрическое отверстие под больший подшипник и его утопленный торец) должно быть не более 0,12 мм. Биение нижнего торца ступицы относительно баз Е, Ж не должно превышать 0,16 на радиус равного 100 мм. Цилиндрическое отверстие под сальник также выполняется по 7-му квалитету точности (шероховатость Ra=0,4). Менее точными являются восемь отверстий под шпильки. Многие поверхности у данной детали являются свободными и не обрабатываются.
2.6 Обоснование метода изготовления заготовки
Наиболее широко применяют для получения заготовок в машиностроении следующие методы: литье, обработка металлов давлением и сварка, а также комбинации этих методов. Однако каждый из методов содержит большое число способов получения заготовок. Многообразие способов получения заготовок и их сочетаний приводит к тому, что выбор способа получения заготовки становится сложной технико-экономической задачей.
Прежде всего, следует определить, каким методом наиболее целесообразно получить заготовку для данной детали. Выбор способа получения заготовки - всегда очень сложная, подчас трудноразрешимая задача, так как часто различные способы могут надежно обеспечить технические и экономические требования, предъявляемые к детали. Таким образом, выбранный способ получения заготовки должен быть экономичным, обеспечивающим высокое качество детали, производительным, нетрудоемким процессом.
Для мелкосерийного и единичного производств характерно использование в качестве заготовок горячекатаного проката, отливок, полученных литьем в песчано-глинистые формы, и поковок, полученных ковкой. Это обусловливает большие припуски и напуски, значительный объем последующей механической обработки, повышение трудоемкости, в том числе и за счет низкой технологической оснащенности. В структуре себестоимости в данном случае велика доля затрат на основные материалы (до 50%) и заработную плату (до 30-35%).
В условиях крупносерийного и массового производств рентабельны такие способы производства заготовок, как литье в кокиль и под давлением, в оболочковые формы и по выплавляемым моделям. Применение этих способов позволяет значительно сократить припуски на механическую обработку (в среднем на 25—30% к массе заготовки), снизить трудоемкость изготовления деталей.
Повышение точности формообразующих процессов, выбор наиболее точных и прогрессивных способов получения заготовок на базе увеличения серийности производства является одним из важнейших резервов повышения технического уровня производства. Технологическую оснащенность производства характеризует наличие технологической оснастки. В заготовительном производстве это подкладные штампы и штампы для горячей объемной штамповки, литейная технологическая оснастка, металлические формы, модели и т. п. Оптимальный уровень технологической оснащенности определяется таким объективным критерием, как себестоимость производства. Лимитируя удельные и общие затраты на оснастку и инструмент, себестоимость связывает между собой первоначальную стоимость технологической оснастки, ее стойкость и экономический эффект, получаемый в результате роста технологической оснащенности. Причем в данном случае основным является характер производства. При единичном и мелкосерийном производствах специальная оснастка, рассчитанная на получение одной детали, не может быть использована до полного ее износа, поэтому дополнительные затраты на оснастку оказывают больше экономии, достигаемой от сокращения объема механической обработки.
Если материал обладает пониженными литейными свойствами (низкая жидкотекучесть, высокая склонность к усадке и т. п.), не рекомендуется применять для получения отливок из этого материала такие способы, как литье в кокиль или литье под давлением, так как из-за низкой податливости металлических форм могут возникнуть литейные напряжения, коробление отливки и трещины. В таких случаях целесообразно применение следующих способов: оболочковое литье и литье в песчано-глинистые формы.
Литье в оболочковые формы является прогрессивным способом получения отливок с повышенными чистотой поверхности и точностью размеров. При данном способе литья формы изготавливается по горячим металлическим моделям, формовочная смесь содержит огнеупорный материал (например, кварцевый песок) и органические связующие - термореактивные смолы, например пульвербакелит (3—9% от массы песка). Оболочковая форма состоит из двух полуформ с горизонтальной или вертикальной плоскостью разъема и стержней. После затвердевания отливки оболочковая форма легко разрушается. Для изготовления оболочковых форм в производстве используются различные типы машин, основное назначение которых - формирование и съем оболочек; процесс легко поддается механизации и автоматизации. Литьем в оболочковые формы изготавливают ответственные детали, например ребристые цилиндры для мотоциклов, коленчатые валы для автомобилей, гильзы, звездочки, зубчатые колеса, детали компрессоров, тепловозов, судовых двигателей и т.п. из чугуна, нелегированных сталей, цветных и специальных сплавов. Можно получать отливки массой от нескольких сот граммов до ста килограммов, если допускается невысокая размерная точность, то можно получать отливки массой более ста килограммов. Максимально возможные габариты отливок-500-700 мм. Наиболее рационально применение литья в оболочковые формы при массовом и крупносерийном производствах. Качество поверхностей и точность размеров отливок условно оцениваются по стандартам для механической обработки. Данный способ литья обеспечивает параметр шероховатости поверхности Rz=160-20 мкм и точность размеров, соответствующих 14—15-му квалитетам. Шероховатость поверхности крупных отливок (массой более 50 кг) грубее, точность ниже. Допускаемые отклонения размеров отливок из чугуна по первому классу точности по ГОСТ 1855—55.
Оболочковая форма ко времени затвердевания отливки легко разрушается, не препятствует усадке металла, поэтому в отливках возникают незначительные внутренние напряжения и несколько повышаются механические свойства по сравнению с отливками, изготовленными в песчано-глинистых формах.
Эффективность способа литья в оболочковые формы по сравнению с литьем в песчано-глинистые формы определяется следующими преимуществами:
- значительная экономия металла (до 30—50%); отливки имеют чистую поверхность и повышенную точность размеров, последнее позволяет назначать припуски на механическую обработку, примерно в два раза меньшие, чем при литье в песчаные формы;
- среднее отклонение размеров отливок в оболочковые формы составляет 0,3—0,7 мм на 100 мм габаритного размера, для мелких отливок — до 0,2 мм;
- уменьшается расход формовочных материалов в 10—20 раз;
- оболочковые формы не гигроскопичны, имеют высокую прочность, их можно хранить длительное время;
- применение оболочковых форм увеличивает выход годного литья за счет снижения брака в 1,5—2 раза; при выбивке формы оболочка легко разрушается, что уменьшает затраты труда на обрубку и очистку отливок в среднем на 50%.
Тем не менее способ литья в оболочковые формы не лишен и недостатков. К ним относятся:
- утрата точности формы в разъеме при изготовлении тяжелых и крупногабаритных отливок;
- работа с горячей модельной оснасткой вызывает необходимость использования только металлической модели;
- высокая стоимость оснастки, оборудования и материалов, в частности стоимость пульвербакелита.
Все это приводит к тому, что стоимость отливок, полученных литьем в оболочковые формы, несколько выше, чем отливок, полученных литьем в песчано-глинистые формы. При литье в оболочковые формы значительно снижаются расходы на технологические операции, так как примерно в четыре раза сокращаются трудоемкость операции выбивки, а также обработка и зачистка отливок. Однако за счет высокой стоимости пульвербакелита расходы на формовочную смесь увеличиваются в шесть раз. Этим в основном и объясняется повышение себестоимости литья в оболочковые формы. Тем не менее, за счет снижения припусков и объема механической обработки происходит снижение общей себестоимости.
Таким образом, заготовку для ступицы колеса грузового автомобиля целесообразно изготавливать методом литья в оболочковые формы. При этом изменится вес отливки с 23,3 кг до 21,2 кг.
Пересчет коэффициента использования материала:
(2.3)
2.7 Выбор и обоснование технологических баз
При выборе баз для механической обработки, в первую очередь, решают вопрос, связанный с назначением баз для выполнения первой операции. В качестве черновой технологической базы выбрана: торцевая поверхность фланца ступицы. В качестве технологических баз следует принимать поверхности, которые одновременно являются конструкторскими и измерительными базами детали, т. е. соблюдать принцип единства баз. Кроме этого необходимо соблюдать принцип постоянства баз, т. е. нужно использовать как можно меньше количество баз.
В качестве технологических баз применяются следующие поверхности:
1 Для обработки торцевых поверхностей со стороны фланца ступицы, отверстия под подшипник и под сальник; для получения отверстий и последующем нарезании резьбы на торце фланца ступицы; для раскатывания цилиндрических отверстий под подшипники - торец фланца ступицы и наружная цилиндрическая поверхность.
2 Для обработки внутреннего торца фланца ступицы - торец фланца ступицы и внутренняя цилиндрическая поверхность.
2.8 Разработка технологического маршрута обработки детали
При составлении маршрута обработки были соблюдены следующие правила:
1 Обрабатываются поверхности, являющиеся черновыми технологическими базами и поверхности, содержащие наибольшее количество металла.
2 Подготавливаются поверхности, которые будут использоваться в качестве чистовых технологических баз. Это нижний торец фланца ступицы и внутренняя цилиндрическая поверхность под подшипник.
3 Ведется обработка формообразующих поверхностей: вся последующая токарная обработка, растачивание цилиндрических отверстий под сальник и подшипники, развертывание отверстий под подшипник, сверление отверстий, нарезание резьбы под болты и т. д.
4 Проводятся отделочная операция: раскатывание отверстий под подшипник.
Технологический маршрут обработки ступицы колеса грузового автомобиля приводится в таблице 2.3 – «Технологический маршрут обработки ступицы грузового автомобиля».
Таблица 2.3 - Технологический маршрут обработки
ступицы грузового автомобиля

операции Наименование операции Применяемое оборудование
1 2 3
001 Заготовительная
005 Токарная, установ 1

1 С правой стороны:
1.1 Проточить резцом предварительно 320
1.2 Расточить предварительно:
1.2.1 211 на глубину 13,5
1.2.2 88 под подшипник на глубину 47,5 от торца фланца ступицы
2 С левой стороны:
2.1 Проточить предварительно:
2.1.1 147, выдержать высоту 129,5 от нижнего торца 325
2.1.2 153, выдержать высоту 118,5 от нижнего торца фланца 320
2.2 Расточить предварительно:
2.2.1 Отверстие под подшипник 118 на глубину 35
2.2.2 Отверстие под сальник 134 на глубину 14,5
2.2.3 Расточить фаску 2x45° на 118 Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
1 2 3
010 Токарная, установ 2

1 С правой стороны:
1.1 Проточить торец фланца предварительно, выдержать толщину на бобышке 31,5
1.2 Подрезать предварительно:
1.2.1 Торец дна отверстия под подшипник на глубину 45 от наружного торца фланца
1.2.2 Внешний торец отверстия 88
2 С левой стороны:
2.1 Подрезать предварительно:
2.1.1 Торец 224 до 154
2.1.2 Торец отверстия под сальник
2.1.3 Дно отверстия под подшипник Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
015 Токарная, установ 3

1 С правой стороны:
1.1 Проточить канавку глубиной 6-5,5 предварительно
2 С левой стороны:
2.1 Проточить предварительно: 151 на глубину 11
2.2 Проточить окончательно: 233
2.3 Проточить окончательно: 145-144 на длину 58
2.4 Расточить окончательно:
2.4.1 Гнездо под подшипник 119,65-119,42
2.4.2 Гнездо под сальник 135,6-135,4 на глубину 15
2.5 Расточить фаску 1,3x45° на 0119,65-119,42 Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
1 2 3
020 Токарная, установ 4

1 С правой стороны:
1.1 Подрезать окончательно:
1.1.1 Торец фланца, выдержав высоту бобышек 30,5
1.1.2 Наружный торец отверстия под подшипник, выдержав перепад от торца фланца 11
1.2 Расточить фаску 1x45° на 213
2 С левой стороны:
2.1 Проточить канавку Rl,75 до 141,5
2.2 Подрезать окончательно торец дна отверстия под подшипник
2.3 Расточить фаску на отверстии 135,6 под углом 30° на глубину 4,3 Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
025 Токарная, установ 5

1 С правой стороны:
1.1 Расточить окончательно канавку шириной 24,02-23,5 мм на глубину 5 мм.
1.2 Обточить фаску 2x45° на 326
1.3 Обточить фаску 2x45° на 88
2 С левой стороны:
2.1 Проточить окончательно:
2.1.1 Внешний торец отверстия 136
2.1.2 Торец 224 до 151 Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
1 2 3
030 Токарная, установ 6

1 С правой стороны:
1.1 Обточить окончательно фланец 320
1.2 Расточить 213,6-213,0 на глубину 10,5
1.3 Расточить предварительно отверстие под подшипник 89,65-89,42 на глубину 34
2 С левой стороны:
2.1 Развернуть окончательно отверстие под подшипник 119,976-119,941 Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
035 Токарная, установ 7

1 С правой стороны:
1.1 Развернуть окончательно отверстие под подшипник 89,976-89,941 на глубину 34
1.2 Обточить фаски 0,5x45° на 251 и 299
2 С левой стороны:
2.1 Развернуть окончательно отверстие под сальник 136,08-136 на глубину 15
2.2 Проточить окончательно 150-149,84 на длину 11
2.3 Проточить фаску: 1x45° на 145
2.4 Проточить фаску0,5x45° на 224 Специальный горизонтальный токарный 2-хсторонний автомат фирмы КО.МА.У
1 2 3
040 Радиально-сверлильная

1 Сверлить 8 сквозных отверстий 19,5 Радиально-сверлильный станок с ЧПУ
045 Радиально-сверлильная

1 Сверлить 8 сквозных отверстий 13 Радиально-сверлильный станок с ЧПУ
050 Радиально-сверлильная

1 Развернуть 8 отверстий 20,045-20,0 Радиально-сверлильный станок с ЧПУ
1 2 3
055 Радиально-сверлильная

1 Сверлить 4 отверстия 6,912-6,647 под резьбу на глубину 18
2 Зенковать фаски 1,5x45° на 8-ми отверстиях 20 Радиально-сверлильный станок с ЧПУ
060 Радиально-сверлильная

1 Зенковать фаски 0,75x45° на 4-х отверстиях под резьбу
2 Цековать торец 7 отверстий 26 с образованием фаски 1x45° Радиально-сверлильный станок с ЧПУ
065 Радиально-сверлильная

1 Нарезать резьбу М8x1,25-6Н в 4-х отверстиях на глубину 12 Радиально-сверлильный станок с ЧПУ
1 2 3
070 Моечная
1 Промыть деталь
075 Токарная

1 Раскатать одновременно отверстия под подшипник 119,976-119,941 и 89,976-89,941 Специальный горизонтальный токарный 2-х шпиндельный автомат фирмы КО.МА.У
080 Токарная

1 Проточить предварительно: 235
2 Подрезать предварительно: торец фланца ступицы до 235
3 Проточить окончательно: 235
4 Подрезать окончательно: торец фланца ступицы до 235 Токарный вертикальный 8-ми шпиндельный полуавтомат модели 1284Б
085 Контрольная
090 Слесарная
095 Балансировка

2.9 Расчёт припусков на механическую обработку
2.9.1 Определение припуска на цилиндрическое отверстие под подшипник d= мм
1 Определяем, что для достижения заданной шероховатости и в соответствии с точностью размеров по чертежу, обработку указанной поверхности следует производить в 4 этапа:
- чёрное растачивание;
- чистовое растачивание;
- развёртывание;
- раскатывание.
Установочной базой для обработки заготовки можно выбрать цилиндрическую поверхность и внутренний торец фланца ступицы.
2 Определяем значения допусков Т для соответствующих операций. Для окончательной операции значение допуска берётся с чертежа детали:
Тзаг=0,63 мм.
3 Определяем ρзаг:
мкм. (2.4)
4 Пространственные отклонения для чернового и чистового точения определяются:
мкм; (2.5)
мкм.
На операции развёртывания и раскатывания пространственные отклонения малы и не учитываются. На всех операциях крепление происходит в спутнике. Погрешность установки на первой операции определяется в зависимости от применяемого зажимного приспособления. При этом мкм. На следующих операциях погрешность установки не учитывается, так как деталь не переустанавливается.
5 Определение расчётных значений минимальных припусков:
, (2.6)
где Rz – высота микронеровностей;
П – глубина дефектного слоя;
ρ – суммарное значение пространственных отклонений;
ε – погрешность установки;
мкм;
мкм;
мкм;
мкм.
6 Определение расчётных припусков:
; (2.7)
мкм;
мкм;
мкм;
мкм;
7 Определение расчётных размеров:
, (2.8)
где Аi-1 – расчётный размер с предыдущей операции, мм;
Zрасчi-1 – расчётный припуск с предыдущей операции, мм;
А4=119,976 мм;
А3=119,976-0,122=119,854 мм;
А2=119,854-0,312=119,542 мм;
А1=119,542-0,526=119,016 мм;
А0=119,016-2,156=116,86 мм.
8 Определение наибольших предельных размеров путём округления в меньшую сторону соответствующих расчётных размеров.
Определение наименьших предельных размеров:
Анмi=Анбi-Тdi, (2.9)
где Анбi – наибольший размер на данной операции, мм;
Анм4=119,97-0,035=119,941 мм;
Анм3=119,94-0,087=119,954 мм;
Анм2=119,854-0,14=119,714 мм;
Анм1=119,714-0,22=119,494 мм;
Анм0=116,86-0,63=116,23 мм.
9 Определение предельных значений припусков:
(2.10)
=119,941-119,854=0,087 мм=87 мкм;
=119,854-119,542=0,312 мм=312 мкм;
=119,714-119,016=0,698 мм=698 мкм;
=119,494-116,86=2,634 мм=2634 мкм;
; (2.11)
=119,976-119,854=0,122 мм=122 мкм;
=119,85-119,714=0,136 мм=136 мкм;
=119,542-119,194=0,348 мм=348 мкм;
=119,016-116,23=2,726 мм=2726 мкм.
10 Определение предельных значений общих припусков:
=119,941-116,86=3,081 мм=3081 мкм;
=119,976-116,23=3,746 мм=3746 мкм.
Таблица 2.4 – Таблица расчёта припусков
Технологическая операция Элементы припуска в мм Минимальный припуск Zmin, мкм Расчётный припуск Zрасч, мкм Расчётный размер, мкм Допуск Td, мкм Предельные значения припуска Предельные размеры заготовки, мм
RZ П ρ ε

АНМ АНБ
Заготовка 40 260 390 - 116,86 630 116,23 116,86
Растачивание черновое 80 50 23 250 1526 2726 119,016 220 722 3204 119,494 119,016
Растачивание чистовое 40 30 16 0 306 526 119,542 140 348 698 119,714 119,542
Развёртывание 2,5 15 - 0 172 312 119,854 87 136 312 119,854 119,85
Раскатывание - - - 0 35 122 119,916 35 122 87 119,941 119,76
=3081 мкм; =3746 мкм.


2.9.2 Определение припуска на цилиндрическое отверстие под сальник d= мм
1 Определяем, что для достижения заданной шероховатости и в соответствии с точностью размеров по чертежу, обработку указанной поверхности следует производить в 3 этапа:
- чёрное растачивание;
- чистовое растачивание;
- развёртывание.
Установочной базой для обработки заготовки можно выбрать цилиндрическую поверхность и внутренний торец фланца ступицы.
2 Определяем значения допусков Т для соответствующих операций. Для окончательной операции значение допуска берётся с чертежа детали. Допуск на заготовку:
Тзаг=0,8 мм.
3 Определяем ρзаг:
мкм. (2.12)
4 Пространственные отклонения для чернового и чистового точения определяются:
мкм; (2.13)
мкм.
На операции развёртывания и раскатывания пространственные отклонения малы и не учитываются. На всех операциях крепление происходит в спутнике. Погрешность установки на первой операции определяется в зависимости от применяемого зажимного приспособления. При этом мкм. На следующих операциях погрешность установки не учитывается, так как деталь не переустанавливается.
5 Определение расчётных значений минимальных припусков:
, (2.14)
где Rz – высота микронеровностей;
П – глубина дефектного слоя;
ρ – суммарное значение пространственных отклонений;
ε – погрешность установки;
мкм;
мкм;
мкм.
6 Определение расчётных припусков:
; (2.15)
мкм;
мкм;
мкм;
7 Определение расчётных размеров:
, (2.16)
где Аi-1 – расчётный размер с предыдущей операции, мм;
Zрасчi-1 – расчётный припуск с предыдущей операции, мм;
А3=135,92 мм;
А2=135,92-0,222=135,698 мм;
А1=135,698-0,476=135,222 мм;
А0=135,222-2,326=132,896 мм.
8 Определение наибольших предельных размеров путём округления в большую сторону соответствующих расчётных размеров.
Определение наименьших предельных размеров:
Анмi=Анбi-Тdi, (2.17)
где Анбi – наибольший размер на данной операции, мм;
Анм3=135,92-0,08=135,84 мм;
Анм2=135,698-0,1=135,598 мм;
Анм1=135,222-0,25=134,972 мм;
Анм0=132,896-0,8=132,096 мм.
9 Определение предельных значений припусков:
(2.18)
=135,84-135,698=0,142 мм=142 мкм;
=135,598-135,222=0,376 мм=376 мкм;
=134,972-132,896=2,076 мм=2076 мкм;
; (2.19)
=135,92-135,598=0,322 мм=322 мкм;
=135,698-134,972=0,726 мм=726 мкм;
=135,222-132,096=3,126 мм=3126 мкм.
10 Определение предельных значений общих припусков:
=135,84-132,896=2,944 мм=2944 мкм; (2.20)
=135,92-132,096=3,824 мм=3824 мкм.
Таблица 2.5 – Таблица расчёта припусков
Технологическая операция Элементы припуска в мм Минимальный припуск Zmin, мкм Расчётный припуск Zрасч, мкм Расчётный размер, мкм Допуск Td, мкм Предельные значения припуска Предельные размеры заготовки, мм
RZ П ρ ε

АНМ АНБ
Заготовка 40 260 390 - 132,896 800 132,096 132,896
Растачивание черновое 40 50 23 250 1526 2326 135,222 250 2076 3126 134,972 135,222
Растачивание чистовое 20 25 16 - 226 476 135,698 100 376 726 135,598 135,698
Развёртывание 2,5 15 - - 122 222 135,92 80 142 322 135,84 135,92
=2944 мкм; =38240 мкм.


2.10 Расчёт режимов резания
2.10.1 Расчёт режимов резания для токарной обработки, установ 1, с правой стороны
1 Определение глубины резания для резцов:
мм; (2.21)
мм;
мм;
мм;
мм.
2 Определение длины рабочего хода инструмента:
мм; (2.22)
где - длина резания, мм;
- величина врезания, подвода и перебега инструмента;
- дополнительная длина хода рабочего инструмента с рабочей подачей.
(2.23)
мм;
мм;
мм;
мм;
мм.
3 Величина рабочего хода для суппорта: мм.
4 Назначение подач суппорта:
а) Определение подач суппорта по нормативам
мм, (2.24)
принимаем 0,28 мм/об.
б) Корректировка подач суппорта
об. (2.25)
5 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.26)
где Тм – нормированная стойкость инструмента в минутах машинной работы станка; 110;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,89.
Тогда стойкость инструмента будет равна:
6 Расчёт скоростей резания V в м/мин:
а) Определение рекомендуемой нормативами скорости резания:
м/мин, (2.27)
где К1 – коэффициент, приведения табличной скорости резания к заданным условиям обработки в зависимости от обрабатываемого материала и его твёрдости;
K2 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от стойкости резцов и марки режущей части;
К3 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от вида обработки.
б) Расчёт частоты вращения шпинделя станка:
мин-1; (2.28)
принимаем 224 мин-1.
в) Уточнение скоростей резания по принятому числу оборотов:
; (2.29)
м/мин;
м/мин;
м/мин;
м/мин;
м/мин;
7 Расчёт основного машинного времени обработки:
; (2.30)
мин.
8 Проверочный расчёт по мощности резания:
а) Определение по нормативам сил резания:
, (2.31)
где - сила резания по нормативам, кг;
- коэффициент, зависящий от обрабатываемого материала; 0,55;
- коэффициент, зависящий от скорости резания и переднего угла; 0,9;
кг;
кг;
кг;
кг;
кг.
б) Расчёт мощности резания для каждого инструмента:
; (2.32)
кВт
кВт
кВт
кВт
кВт
в) Расчёт наибольшего за период работы станка суммарной мощности:
; (2.33)
кВт
г) Проверка по мощности двигателя:
, (2.34)
где - мощность резания, кВт; 8,27;
- коэффициент полезного действия двигателя; 0,75;
; 8,27 кВт13,5 кВт.
Следовательно, обработка при выбранных режимах возможна.
2.10.2 Расчёт режимов резания для токарной обработки, установ 4, с левой стороны
1 Определение глубины резания для резцов:
мм;
мм;
мм;
2 Определение длины рабочего хода инструмента:
мм; (2.35)
где - длина резания, мм;
- величина врезания, подвода и перебега инструмента;
- дополнительная длина хода рабочего инструмента с рабочей подачей.

мм;
мм;
мм;
3 Величина рабочего хода для суппорта: мм.
4 Назначение подач суппорта:
а) Определение подач суппорта по нормативам
мм, принимаем 0,07 мм/об.
б) Корректировка подач суппорта
об. (2.36)
5 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.37)
где Тм – нормированная стойкость инструмента в минутах машинной работы станка; 150;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,78.
Тогда стойкость инструмента будет равна:
6 Расчёт скоростей резания V в м/мин:
а) Определение рекомендуемой нормативами скорости резания
м/мин, (2.38)
где К1 – коэффициент, приведения табличной скорости резания к заданным условиям обработки в зависимости от обрабатываемого материала и его твёрдости;
K2 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от стойкости резцов и марки режущей части;
К3 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от вида обработки.
б) Расчёт частоты вращения шпинделя станка:
мин-1; (2.39)
принимаем 160 мин-1.
в) Уточнение скоростей резания по принятому числу оборотов:
; (2.40)
м/мин;
м/мин;
м/мин.
7 Расчёт основного машинного времени обработки:
; (2.41)
мин.
8 Проверочный расчёт по мощности резания:
а) Определение по нормативам сил резания:
, (2.42)
где - сила резания по нормативам, кг;
- коэффициент, зависящий от обрабатываемого материала; 0,55;
- коэффициент, зависящий от скорости резания и переднего угла; 0,9;
кг;
кг;
кг;
б) Расчёт мощности резания для каждого инструмента:
; (2.43)
кВт
кВт
кВт
в) Расчёт наибольшего за период работы станка суммарной мощности:
; (2.44)
кВт
г) Проверка по мощности двигателя:
, (2.45)
где - мощность резания, кВт; 7,5;
- коэффициент полезного действия двигателя; 0,75;
; 0,697 кВт6,75 кВт.
Следовательно, обработка при выбранных режимах возможна.
2.10.3 Расчёт режимов резания для токарной обработки, установ 2, с правой стороны
1 Определение глубины резания для резцов:
мм;
мм;
мм;
2 Определение длины рабочего хода инструмента:
мм; (2.46)
где - длина резания, мм;
- величина врезания, подвода и перебега инструмента;
- дополнительная длина хода рабочего инструмента с рабочей подачей.

мм;
мм;
мм;
3 Величина рабочего хода для суппорта: мм.
4 Назначение подач суппорта:
а) Определение подач суппорта по нормативам
мм, принимаем 0,45 мм/об.
б) Корректировка подач суппорта
об. (2.47)
5 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.48)
где Тм – нормированная стойкость инструмента в минутах машинной работы станка; 150;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,9.
Тогда стойкость инструмента будет равна:
6 Расчёт скоростей резания V в м/мин:
а) Определение рекомендуемой нормативами скорости резания
м/мин, (2.49)
где К1 – коэффициент, приведения табличной скорости резания к заданным условиям обработки в зависимости от обрабатываемого материала и его твёрдости;
K2 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от стойкости резцов и марки режущей части;
К3 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от вида обработки.
б) Расчёт частоты вращения шпинделя станка:
мин-1; (2.50)
принимаем 108 мин-1.
в) Уточнение скоростей резания по принятому числу оборотов:
; (2.51)
м/мин;
м/мин;
м/мин.
7 Расчёт основного машинного времени обработки:
; (2.52)
мин.
8 Проверочный расчёт по мощности резания:
а) Определение по нормативам сил резания:
, (2.53)
где - сила резания по нормативам, кг;
- коэффициент, зависящий от обрабатываемого материала; 0,55;
- коэффициент, зависящий от скорости резания и переднего угла; 0,9;
кг;
кг;
кг;
б) Расчёт мощности резания для каждого инструмента:
; (2.54)
кВт
кВт
кВт
в) Расчёт наибольшего за период работы станка суммарной мощности:
; (2.55)
кВт
г) Проверка по мощности двигателя:
, (2.56)
где - мощность резания, кВт; 3,87;
- коэффициент полезного действия двигателя; 0,75;
; 3,87 кВт13,5 кВт.
Следовательно, обработка при выбранных режимах возможна.
2.10.4 Расчёт режимов резания для токарной обработки, установ 6, с левой стороны
1 Определение глубины резания для резцов:
мм.
2 Определение длины рабочего хода инструмента:
мм; (2.57)
где - длина резания, мм;
- величина врезания, подвода и перебега инструмента;
- дополнительная длина хода рабочего инструмента с рабочей подачей.

мм.
3 Назначение подач суппорта:
а) Определение подач суппорта по нормативам
мм/об, принимаем 0,34 мм/об.
4 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.58)
где Тм – нормированная стойкость инструмента в минутах машинной работы станка; 100;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,86.
Тогда стойкость инструмента будет равна:
5 Расчёт скоростей резания V в м/мин:
а) Определение рекомендуемой нормативами скорости резания
м/мин, (2.59)
где К1 – коэффициент, приведения табличной скорости резания к заданным условиям обработки в зависимости от обрабатываемого материала и его твёрдости;
K2 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от стойкости резцов и марки режущей части;
К3 – коэффициент приведения табличной скорости резания к заданным условиям обработки в зависимости от вида обработки.
б) Расчёт частоты вращения шпинделя станка:
мин-1; (2.60)
принимаем 103 мин-1.
в) Уточнение скоростей резания по принятому числу оборотов:
; (2.61)
м/мин.
6 Расчёт основного машинного времени обработки:
; (2.62)
мин.
7 Проверку по мощности не проводим, так как силы резания при развёртывании небольшие.
2.10.5 Расчёт режимов резания для сверления отверстий 19,5 мм
1 Расчёт длины рабочего хода:
мм; (2.63)
где мм - длина резания;
y=10 мм при d=19,5 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.64)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,72.
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.65)
где Vтабл=17 м/мин при S0=0,5 мм/об и d=19,5 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,6 при Тр=40 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=1,38 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.66)
6 Расчёт основного машинного времени обработки:
мин. (2.67)
7 Определение осевой силы резания:
кН, (2.68)
где Pтабл=6500 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.69)
где Nтабл=4,9– мощность резания при s0=0,5 мм/об и d=19,5 мм;
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
2.10.6 Расчёт режимов резания для сверления отверстий 13 мм
1 Расчёт длины рабочего хода:
мм; (2.70)
где мм - длина резания;
y=8 мм при d=13 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.71)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,63.
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.72)
где Vтабл=17 м/мин при S0=0,35 мм/об и d=13 мм.
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,6 при Тр=20 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=1,07 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.73)
6 Расчёт основного машинного времени обработки:
мин. (2.74)
7 Определение осевой силы резания:
кН, (2.75)
где Pтабл=3300 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.76)
где Nтабл=1,5 – мощность резания при s0=0,35 мм/об и d=13 мм.
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
2.10.7 Расчёт режимов резания для развёртывания отверстий 20мм
1 Расчёт длины рабочего хода:
мм; (2.77)
где мм - длина резания;
y=17 мм при d=20 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об. (2.78)
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.79)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,61
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.80)
где Vтабл=30 м/мин при S0=0,84 мм/об и d=20 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,6 при Тр=30 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=1,35 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.81)
6 Расчёт основного машинного времени обработки:
мин. (2.82)
7 Определение осевой силы резания:
кН, (2.83)
где Pтабл=7500 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.84)
где Nтабл=11 кВт – мощность резания при s0=0,84 мм/об и d=20 мм;
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
2.10.8 Расчёт режимов резания для сверления отверстий 6мм
1 Расчёт длины рабочего хода:
мм; (2.85)
где мм - длина резания;
y=2 мм при d=6 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.86)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,9
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.87)
где Vтабл=20 м/мин при S0=0,12 мм/об и d=6 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,6 при Тр=30 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=3 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.88)
6 Расчёт основного машинного времени обработки:
мин. (2.89)
7 Определение осевой силы резания:
кН, (2.90)
где Pтабл=950 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.91)
где Nтабл=0,21 кВт – мощность резания при s0=0,12 мм/об и d=6 мм;
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
2.10.9 Расчёт режимов резания для зенкования фасок 1,545° в отверстиях 20мм
1 Расчёт длины рабочего хода:
мм; (2.92)
где мм - длина резания;
y=2 мм при d=20 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.93)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,42
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.94)
где Vтабл=34 м/мин при S0=0,5 мм/об и d=20 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,6 при Тр=20 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=0,075 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.95)
6 Расчёт основного машинного времени обработки:
мин. (2.96)
7 Определение осевой силы резания:
кН, (2.97)
где Pтабл=1430 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.98)
где Nтабл=3,6 кВт – мощность резания при s0=0,5 мм/об и d=20 мм;
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
2.10.10 Расчёт режимов резания для зенкования фасок 0,7545° в отверстиях 6мм
1 Расчёт длины рабочего хода:
мм; (2.99)
где мм - длина резания;
y=1 мм при d=6 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.100)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,42
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.101)
где Vтабл=48 м/мин при S0=0,18 мм/об и d=6 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,5 при Тр=15 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=0,125 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.102)
6 Расчёт основного машинного времени обработки:
мин. (2.103)
7 Определение осевой силы резания:
кН, (2.104)
где Pтабл=300 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.105)
где Nтабл=0,87 кВт – мощность резания при s0=0,18 мм/об и d=6 мм;
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
2.10.11 Расчёт режимов резания для цекования отверстий 26мм с образованием фаски 145°
1 Расчёт длины рабочего хода:
мм; (2.106)
где мм - длина резания;
y=2 мм при d=26 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
при d=26 мм, мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.107)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,33
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.108)
где Vтабл=42 м/мин при S0=0,33 мм/об и d=26 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,5 при Тр=15 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=0,03 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.109)
6 Расчёт основного машинного времени обработки:
мин. (2.110)
7 Определение осевой силы резания:
кН, (2.111)
где Pтабл=330 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала;
кН. (2.112)
8 Определение мощности резания:
кВт, (2.113)
где КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала;
кВт. (2.114)
2.10.12 Расчёт режимов резания для нарезания резьбы М81,25-6Н в отверстиях на глубину 12 мм
1 Расчёт длины рабочего хода:
мм; (2.115)
где мм - длина резания;
y=5 мм при d=8 мм – длина подвода, врезания и перебега инструмента;
- дополнительная длина хода, вызванная в отдельных случаях особенностями наладки и конфигурации детали.
2 Назначение подачи на оборот шпинделя в мм/об станка:
мм/об.
3 Определение стойкости инструмента по нормативам:
Стойкость инструмента определяется по формуле:
(2.116)
где Тм – нормированная стойкость инструмента в минутах основного времени обработки;
l - коэффициент времени резания.

если l>0,7, то данный коэффициент можно не учитывать.
В данном случае l=0,7
Тогда стойкость инструмента будет равна:
4 Расчёт скорости резания V в м/мин:
м/мин, (2.117)
где Vтабл=10 м/мин при S=1,25 мм и d=8 мм;
К1=1,0 – коэффициент, зависящий от обрабатываемого материала;
K2=1,3 при Тр=20 мин. рез. – коэффициент, зависящий от стойкости инструмента;
К3=1,0 при Lрез/D=1,5 – коэффициент, зависящий от отношения длины резания к диаметру.
5 Расчёт частоты вращения шпинделя станка:
мин-1. (2.118)
6 Расчёт основного машинного времени обработки:
мин. (2.119)
7 Определение осевой силы резания:
кН, (2.120)
где Pтабл=1250 кН;
KP=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
8 Определение мощности резания:
кВт, (2.121)
где Nтабл=0,37 кВт – мощность резания при s0=0,24 мм/об и d=8 мм;
КN=0,9 при НВ163 – коэффициент, зависящий от обрабатываемого материала.
На основе полученных результатов можно составить технологические карты на каждую операцию, которые приводятся в Приложении Б.

Конструкция базового радиально-сверлильного станка 2М55

http://www.ce-studbaza.ru/werk.php?id=9308

Назначение и область применения
Радиально-сверлильный станок модели 2М55 (рисунок 1.2) предназначен для широкого применения в промышленности.
Благодаря своей универсальности станок находит применение везде, где требуется обработка отверстий – от ремонтного цеха до крупносерийного производства.


1- плита; 2 – цоколь, колонна; 3 – агрегат охлаждения; 4 – токосъёмник; 5- рукав; 6 – механизм подъёма; 7 – зажим рукава; 8 – редуктор; 9 - гидростанция; 10 – гидрозажим; 11 – головка сверлильная; 12 – фрикционная муфта; 13 – коробка скоростей; 14 – коробка подач; 15 – вал червяка; 16 - механизм включения подач; 17 – механизм ручного перемещения головки; 18 – зажим головки; 19 – гидропреселектор; 20 – привод гидропреселектора; 21 – гидропанель; 22 – командоаппарат; 23 – шпиндель; 24 – противовес; 25 - насосная установка; 26 – главный цилиндр; 27 – гидрокоммуникация; 28 - смазка; 29 – электрооборудование колонны; 30 – электрооборудование рукава; 31 – электрооборудование головки
Рисунок 1.2 – Общий вид радиально-сверлильного станка 2М55
На станке можно производить сверление в сплошном материале, рассверливание, зенкерование, развертывание, подрезку торцов, нарезку резьбы метчиками и другие подобные операции.
Применение приспособлений и специального инструмента значительно повышает производительность станков и расширяет круг возможных операций, позволяя производить на них выточку внутренних канавок, вырезку круглых пластин из листа и т. д. При соответствующей оснастке на станке можно выполнять многие операции, характерные для расточных станков.
Общая компоновка станка
Основанием станка является фундаментная плита 1, на которой неподвижно закреплен цоколь. В цоколе на подшипниках монтируется вращающаяся колонна 2, выполненная из стальной трубы. Рукав 5 станка со сверлильной головкой 11 размещен на колонне и перемещается по ней с помощью механизма подъема 6, смонтированного в корпусе на верхнем торце колонны. В этом же корпусе расположено гидромеханическое устройство для зажима колонны и токопроводящее устройство для питания поворотных и подвижных частей станка. Механизм подъема связан с рукавом ходовым винтом.
Сверлильная головка 11 выполнена в виде отдельного силового агрегата и заключает в себе узлы: коробки скоростей 13 и подач 14, механизм подачи 16, шпиндель 23 с противовесом 24 и др. Она перемещается по направляющим рукава вручную. В нужном положении головка фиксируется механизмом зажима, установленным на ней.
В фундаментной плите 1 выполнен бак и насосная установка для подачи охлаждающей жидкости к инструменту; На плите устанавливается стол для обработки на нем деталей небольшого размера.
Все органы управления станком сосредоточены на сверлильной головке. На панели цоколя размещены только кнопки вводного выключателя, подключающего станок к внешней электросети, и выключатели управления насосом охлаждения. Для освещения рабочей зоны в нижней части сверлильной головки установлена электроарматура.
Электроаппаратура смонтирована в нише, выполненной с обратной стороны рукава.
Схема кинематическая
Кинематическая схема станка (рисунок 1.3) состоит из четырех кинематических цепей:
1) вращения шпинделя;
2) движения подач;
3) вертикального перемещения рукава;
4) перемещения сверлильной головки по рукаву.
Шпиндель получает вращение от электродвигателя через промежуточную передачу, пусковую фрикционную муфту и коробку скоростей с четырьмя передвижными зубчатыми блоками. Промежуточная передача обеспечивает определенное число оборотов вала фрикционной муфты в различных исполнениях станка. Фрикционная муфта соединяется с коробкой скоростей либо с двойчаткой 9-10, либо через паразитную шестерню 8, неподвижно закрепленную шестерню 13. В последнем случае коробка скоростей получает обратное вращение, т. е. шпиндель вращается против часовой стрелки. Таким образом, каждым двум ступеням оборотов шпинделя в направлении по часовой стрелке соответствует одна ступень оборотов против часовой стрелки.
Передвижные блоки коробки скоростей (три двойных и один тройной) обеспечивают получение 24 ступеней оборотов шпинделя. Структурный график построен таким образом, что три ступени чисел оборотов перекрываются, а остальные 21 образуют геометрический ряд с =1,26 в интервале от 20 до 2000 об/мин.
Двойной блок на гильзе шпинделя имеет также третье положение, когда обе шестерни выведены из зацепления. При этом шпиндель легко проворачивается от руки.
Коробка подач получает вращение от шпинделя через шестерни 25-26. Один тройной и два двойных блока обеспечивают получение 12 подач, образующих геометрический ряд с =1,41 в интервале от 0,056 до 2,5 мм/об.
Последний вал коробки подач шлицевой муфтой связан с вертикальным валом механизма подач, несущим на себе специальную регулируемую муфту. Муфта обеспечивает размыкание цепи подач при достижении предельного усилия подачи при резании либо на жестком упоре, размыкание цепи тонкой ручной подачи при включении механической подачи и включение тонкой ручной подачи при срабатывании перегрузочного устройства. Зубчатая муфта перегрузочного устройства С соединена с червяком 43, который через червячное колесо 42 с помощью штурвального устройства А соединяется с реечной шестерней 41, находящейся в зацеплении с рейкой 40 пиноли шпинделя.
Грубая ручная подача осуществляется вращением реечного вала 41 с помощью штурвальных рукояток А. Тонкая ручная подача осуществляется вращением маховичка В.
Перемещение головки по рукаву осуществляется с помощью маховика, сидящего на валу, проходящем через отверстие реечного вала подачи. На другом конце вала имеется шестерня 46, которая через накидную шестерню 47 соединяется с рейкой 61, неподвижно укрепленной на рукаве.
Условные обозначения: С – зубчатые муфты; Д – механизм включения подачи; F – зажим головки; Е – привод гидроселектора.
Вертикальное перемещение рукава производится отдельным электродвигателем через редуктор 56, 55, 58, 57, укрепленный на верхней части колонны, винт подъема 59 и гайку 60, расположенную в рукаве.

Рисунок 1.3 – Кинематическая схема станка
Изменение направления перемещения рукава производится реверсированием двигателя. В цепи привода механизма подъема установлена кулачковая предохранительная муфта, которая срабатывает при увеличении сопротивления перемещению рукава.
Сверлильная головка, ее перемещение и зажим
Сверлильная головка размещена на направляющих рукава, по которым легко перемещается в радиальном направлении. Легкое перемещение сверлильной головки обеспечивается применением комбинированных направляющих качения – скольжения. В отжатом положении между нижними направляющими скольжения головки и рукава имеется, зазор 0,03–0,05 мм, а по верхней направляющей рукава сверлильная головка перекатывается на двух роликах. Трение между боковыми направляющими не затрудняет перемещения, так как центр тяжести головки располагается примерно в плоскости этих направляющих.
Ролики установлены с помощью шарикоподшипников на эксцентриковых осях. Поворотом эксцентриковых осей регулируется зазор между нижними направляющими скольжения. Этот зазор должен быть одинаковым с обеих сторон головки, так как в противном случае при зажиме головки ось шпинделя будет смещаться (в продольной плоскости станка). Регулировка осуществляется поворотом червяка.
Регулировка зазора между боковыми направляющими осуществляется поворотом эксцентриковых осей, которые по окончания регулировки необходимо застопорить винтом.
При зажиме сверлильная головка поднимается вверх до выборки люфта между нижними направляющими рукава и головки. Зажим осуществляется с помощью эксцентрикового механизма. При повороте вала поворачивается соединенная с ним шпонкой эксцентриковая втулка, вращающаяся в эксцентриковой втулке на иголках. При повороте вала благодаря эксцентриситету втулки нажимной элемент через пяту упирается в верхнюю направляющую рукава, заставляя головку приподниматься
Поворот вала осуществляется гидроцилиндром, через рейку, нарезанную на штоке поршня, и шестерню. Масло в гидроцилиндр подается от электрозолотника управления, расположенного на гйдропанели.
Смещение оси вала зажима относительно вертикальной плоскости направляющих и конструкция нажимной пяты создают в момент зажима головки горизонтальную составляющую усилия зажима, обеспечивающую постоянный прижим головки к боковым направляющим рукава. Помимо повышения эффективности зажима такая конструкция обеспечивает стабильное положение оси шпинделя в поперечной плоскости станка.
Команда на зажим подается нажатием кнопки, расположенной на пульте в центре маховика ручного перемещения головки. На этом пульте имеются три кнопки, с помощью которых можно осуществлять раздельный зажим и отжим головки при зажатой колонне либо совместный отжим и зажим колонны и головки. При неработающей гидравлике зажим головки можно осуществить вручную. Для этого на свободном конце вала зажима профрезерован квадрат под ключ. Гидравлика включается при нажатии на кнопку «Пуск» пульта управления, расположенного в правой нижней части передней плоскости головки.
Коробка скоростей
Между фрикционной муфтой и шпинделем располагается коробка скоростей, обеспечивающая изменение чисел оборотов шпинделя. С верхней муфтой коробка скоростей соединяется подвижным блоком шестерен. С нижней муфтой коробка скоростей связана шестерней, закрепленной на валу на шпонке, через паразитную шестерню (рисунок 1.4).
Таким образом, при работе верхней муфты вал вращается с одним из двух возможных чисел оборотов в направлении, обеспечивающем вращение шпинделя по часовой стрелке. При работе нижней муфты вал вращается с постоянным числом оборотов в направлении, обеспечивающем вращение шпинделя против часовой стрелки. Вследствие этого каждым двум ступеням оборотов шпинделя по часовой стрелке соответствует одна ступень оборотов против часовой стрелки.

Рисунок 1.4 – Коробка скоростей станка
Нижние опоры валов II, III, IV, V смонтированы непосредственно в расточках корпуса сверлильной головки. Осевое положение этих опор определяется стопорными кольцами. Верхние опоры всех валов размещены в специальных стаканах, расположенных в расточках крышки сверлильной головки.
Вал представляет собой полую чугунную гильзу, во внутреннее шлицевое отверстие которой входит хвостовик шпинделя. В нижней части гильзы установлен отражатель, предотвращающий вытекание масла из картера коробки скоростей. На гильзе закреплена шестерня, служащая для передачи вращения валам коробки подач.
Все шестерни изготовлены из качественных сталей, их зубья закалены до высокой твердости и шлифованы, что обеспечивает бесшумную работу и передачу высоких нагрузок.
Коробка подач
Коробка подач (рисунок 1.5) расположена между шпинделем и механизмом подачи и получает вращение от шпинделя через шестерню, через шлицевое отверстие которой пропущен вал VI.

Рисунок 1.5 – Коробка подач станка
Нижними опорами валов VI и VII служат гнезда, расположенные в корпусе сверлильной головки. Нижняя опора вала VIII расположена в расточке шестерни. Верхние опоры валов расположены в гнездах, установленных в отверстиях крышки сверлильной головки.
На валу VII расположена переборная шестерня-двойчатка, обеспечивающая получение шести ступеней подач. Еще шесть ступеней подач получается при перемещения шестерни в нижнее положение.
Для извлечения подшипников нижних опор валов VI и VII следует резьбовой конец съемника завернуть в отверстие М8 шайбы и легким постукиванием извлечь подшипник.
Все шестерни коробки подач изготовлены из качественной стали, а их зубчатые венцы термически обработаны.
Механизм подачи
Механизм подачи состоит из двух узлов: вертикального червячного вала и горизонтального вала подачи.
Вал связан с последней шестерней коробки подач и передает вращение валу через соединительную муфту. Червяк соединяется с валом при помощи кулачковых муфт, имеющих зубья треугольного профиля. Муфта служит для предохранения цепи подачи от перегрузки и отключения механической подачи при работе на жестком упоре.
Предохранительная муфта механизма подачи отрегулирована на передачу шпинделем максимального осевого усилия. Муфта обеспечивает нормальную работу станка. При регулировке необходимо постепенно сжимать пружину, вращая винт, освободив предварительно контргайку. Пружина предохранительной муфты рассчитана на максимальный момент на валу червяка.
При возрастании крутящего момента на валу червяка до максимального осевая составляющая окружного усилия на муфте перемещает полумуфту вниз, разъединяя ее с полумуфтой. Механическая подача при этом отключается. При вращении маховика через полумуфты вращается червяк, осуществляя тонкую подачу шпинделя вручную.
При выходе из зацепления, полумуфта находящаяся в кольцевом пазу муфты вилка, перемещаясь с рейкой, вызывает поворот шестерни и валика. Установленный на шлицах валика кулачок к моменту отключения полумуфт фиксируется пружинным фиксатором. Включение муфты после ее автоматического отключения производится рукояткой; этой же рукояткой осуществляют досылку муфты для включения маховичка ручной подачи.
Червяк находится в зацеплении с червячным колесом, сидящим на зубчатой муфте, свободно вращающейся на двух конических роликоподшипниках, размещенных на неподвижно укрепленной ступице. Через отверстие ступицы проходит полый реечный вал-шестерня. Задней опорой вала-шестерни служит игольчатый подшипник, расположенный в гнезде. Реечная шестерня входит в зацепление с зубьями рейки гильзы шпинделя.
На шлицевую часть реечного вала насажена втулка, имеющая два торцевых паза, в которых находятся ползушки. Зубья ползушек имеют специальный треугольный профиль, согласованный с профилем зубьев муфты. Внутри ползушек имеются пружины, под действием которых ползушки всегда стремятся выйти из зацепления с внутренними зубьями муфты.
Кроме втулки на шлицах реечного вала закреплена головка переключения, имеющая два паза, в которых на осях закреплены рычаги штурвала. Зубчатые секторы штурвальных рычагов входят в зацепление с реечной частью толкателя, находящегося в расточке вала-шестерни.
В положении штурвала «от себя» толкатель выдвинут вперед. При этом внутренний конец толкателя воздействует на ползушки через ролики, заставляя ползушки своими зубьями войти во впадины зубьев муфты. Шпинделю сообщается механическая подача или тонкая ручная подача маховичка. Если перевести штурвал в положение «на себя», толкатель уходит назад, и против роликов оказываются углубления, куда ролики заталкиваются под воздействием пружин. При этом зубья ползушек выходят из зацепления с зубьями муфты. В таком положении при повороте штурвала вращается реечный вал, сообщая шпинделю ручное перемещение (грубая ручная подача).
Втулка несет на себе червячное колесо, имеющее внутренние треугольные зубья. На червячное колесо насажен лимб со шкалой, градуированной в миллиметрах. В расточке лимба расположен червяк. При ново роте барашка вращается червяк, в результате чего лимб поворачивается относительно червячного колеса. Это позволяет производить тонкую настройку глубины сверления по нониусу. В пазу головки переключения размещается ползушка с треугольными зубьями по наружному контуру. При движении толкателя «от себя» ползушка перемещается в пазу от центра до тех пор, пока ее зубья не войдут во впадины внутреннего венца червячного колеса.
Перемещение толкателя осуществляется поворотом рукоятки, насаженной на хвостовик шестерни, которая входит в зацепление с зубьями, выполненными на хвостовой части толкателя. При движении толкателя «на себя» пружина выводит ползушку из зацепления с червячным колесом.
В лимбе размещена кнопка-упор, которая служит для отключения подачи на заданной глубине. Кнопка-упор имеет два фиксированных положения. В положении «на себя» она не препятствует вращению лимба. В положении «от себя» кнопка-упор при вращении лимба наезжает на шпонку, закрепленную в гнезде, и таким образом жестко связанную с корпусом головки. Если при этом включена механическая подача, то происходит срабатывание муфты. Внешним признаком срабатывания муфты служит поворот рукоятки.
Для предотвращения случайного включения механической подачи при нарезании резьбы метчиками служит специальная кнопка, которая насаживается на штырь, находящийся в стакане. Фиксированное положение кнопки обеспечивается при повороте попаданием ее зубьев в пазы стакана.
Совместно с механизмом подачи выполнен механизм ручного перемещения сверлильной головки, состоящий из маховика, полого валика-шестерни и паразитной шестерни. Последняя находится в зацеплении с рейкой, закрепленной на рукаве.
Через отверстие валика-шестерни проходит кабельная трубка, на переднем конце которой закреплена кнопочная станция с кнопками зажима и отжима сверлильной головки и колонны.
Шпиндель
Шпиндель станка (рисунок 1.6) вращается на трех точных радиальных подшипниках в пиноли. В передней (нижней) опоре, кроме двух радиальных подшипников, установлен упорный подшипник, воспринимающий осевую нагрузку при сверлении. Задняя (верхняя) опора состоит из радиального подшипника и упорного подшипника. Последний служит для восприятия осевых нагрузок при обратных подрезках и других аналогичных операциях.

Рисунок 1.6 – Шпиндель станка
Посадочные поверхности под подшипники выполнены по первому классу точности. Затяжка упорных подшипников производится через опорную шайбу специальной гайкой, которая стопорится винтом.
Передача крутящего момента от коробки скоростей на шпиндель осуществляется через хвостовую часть его, которая своими шлицами сопрягается с гильзой коробки скоростей. Нижняя утолщенная часть шпинделя имеет конусное отверстие (Морзе №5) для установки инструмента.
На пиноли шпинделя нарезана рейка для передачи движения подачи. Ограничение хода шпинделя обеспечивается специальной шпонкой, конец которой заходит в паз пиноли.
В нижней части пиноли запрессована масленка для смазки нижних опор шпинделя. Для доступа шприцом к смазочному отверстию у верхних подшипников необходимо отвернуть винты и снять переднюю крышку сверлильной головки. Смазку производить через отверстие в корпусе.
Во фланце имеется отверстие, в которое вставляется штифт для предохранения шпинделя от выпадения при демонтаже реечного вала.
Противовес
Пружинный противовес смонтирован в средней части сверлильной головки и служит для уравновешивания всего шпиндельного узла.
Усилие натяжения пружины можно регулировать, благодаря чему достигается уравновешивание шпиндельного узла при работе тяжелым инструментом.
Уравновешивающее усилие создается двумя спиральными ленточными пружинами. Постоянство этого усилия по длине хода шпинделя обеспечивается поверхностью барабана (выполненной по архимедовой спирали), на которую ложится роликовая цепь, Конец роликовой цепи закреплен на штыре. Второй конец цепи наматывается на барабан, выполненный заодно с шестерней, которая зацепляется с реечным валом.
На прифланцованном к корпусу сверлильной головки кронштейне на шарикоподшипниках вращается корпус спиральных пружин. Своим внешним витком пружины крепятся к корпусу, внутренний конец пружины входит во втулку.
На оси имеется муфта, которая торцевыми зубьями связана с втулкой. Муфта имеет два стопорных винта, которые своими наконечниками могут заходить в пазы червячного колеса и оси.
Червячное колесо закреплено на втулке и находится в постоянном зацеплении с регулировочным червяком. Стопорный винт может заходить в соответствующие пазы корпуса пружин. Стопорные винты используются при регулировке пружин, демонтаже узла, демонтаже реечного вала и шпинделя.
Регулирование пружин, уравновешивающих шпиндель с инструментом, осуществляется в нижнем положении шпинделя поворотом червяка по часовой стрелке.
Основные технические характеристики и данные радиально-сверлильного станка 2М55
Класс точности Н по ГОСТ 8-71
Наибольший условный диаметр сверления, мм
Вылет шпинделя от образующей колонны, мм
- наибольший
- наименьший
Расстояние от торца шпинделя до плиты, мм
- наибольшее
- наименьшее
Количество ступеней скоростей шпинделя
Пределы скоростей шпинделя, об/мин
Количество ступеней механических подач шпинделя
Пределы подач шпинделя, мм/об
Наибольшая эффективная мощность на шпинделе, кВт
Наибольший крутящий момент на шпинделе, кгс∙см
Наибольшее усилие подачи, кгс
Габариты станка, мм
- длина
- ширина
- высота
Масса станка, кг
Колонна
- диаметр, мм
- зажим
Рукав
- наибольший ход рукава по колонне, мм
- скорость вертикального перемещения, м/мин
- наибольший угол поворота вокруг оси колонны, град.
- зажим на колонне


Сверлильная головка
- наибольший ход по направляющим рукава, мм
- зажим на направляющих рукава
Шпиндель
- ход шпинделя, мм
наибольший
на 1 оборот лимба
на 1 деление шкалы лимба
- размер конуса шпинделя
Плита
- ширина фундаментальной плиты, мм
- ширина паза по ГОСТ 1574-75, мм
- расстояние между пазами, мм
- количество пазов, шт
Противовес
50

1600
375

1600
450
21
20-2000
12
0,056-2,5
4,5
7100
2000

2665
1020
3430
4700

315
гидравлический

750
1,4
360
электромеханический автоматического действия

1225
гидравлический


400
122
1
Морзе №5

1000
22 или 28
160
4
Пружинный


Общий обзор радиально-сверлильных станков

http://www.ce-studbaza.ru/werk.php?id=9307

Из группы сверлильных станков наиболее универсальными являются радиально-сверлильные. Основное их назначение – обработка отверстий в крупных деталях при единичном и мелкосерийном производстве.
Радиально-сверлильные станки применяют на заводах в механических, сборочных, ремонтных и инструментальных цехах, а также мастерских строек. Транспорта и сельского хозяйства. В последнее время их начали применять в крупносерийном производстве при обработке крупных деталей.
Высокая производительность этих станков достигается оснащением их специальными приспособлениями.
В отличие от вертикально-сверлильных станков, при работе на которых приходится перемещать деталь относительно сверла, на радиально-сверлильных станках перемещается сверло относительно обрабатываемой детали.
Шпиндель радиально-сверлильного станка легко перемещается как в радиальном направлении, так и по окружностям различных радиусов, благодаря чему сверло может быть установлено в любой точке площади, ограниченной двумя концентрическими окружностями, одна из которых образована радиусом наибольшего вылета шпинделя, а другая – наименьшего вылета (при круговом вращении рукава).
Особенно существенную роль это отличие играет тогда, когда обрабатывается громоздкая или тяжёлая деталь.
На радиально-сверлильных станках производится сверление отверстий в сплошном материале, рассверливание, зенкование и зенкерование предварительно просверлённых отверстий, зенкование торцовых поверхностей, цилиндрических и конических углублений, развёртывание отверстий, нарезание внутренней резьбы метчиками.
Кроме перечисленных операций, при помощи специальных инструментов и приспособлений на радиально-сверлильных станках можно растачивать отверстия, канавки, вырезать отверстия большого диаметра и диски из листового металла, сверлить квадратные отверстия, притирать точные отверстия цилиндров, подшипников, клапанов и т.д.
Совершенствование радиально-сверлильных станков идёт по пути повышения производительности. Расширения технологических возможностей, механизации и автоматизации.
Стремление к созданию широкоуниверсальных станков, обеспечивающих качественную и высокопроизводительную работу, привело к тому, что современные радиально-сверлильные станки имеют широкие диапазоны и большое количество чисел оборотов и механических подач шпинделя при высокой мощности.
Доля вспомогательного времени при работе на радиально-сверлильных станках всё ещё довольно велика. Поэтому даже небольшое сокращение затрат времени на выполнение вспомогательных операций приводит к повышению производительности станков. С целью уменьшения вспомогательного времени современные радиально-сверлильные станки снабжаются удобными механизмами для переключения чисел оборотов и изменения подач; органы управления станком сосредоточены в одном месте – на шпиндельной головке.
В промышленности применяется много типов радиально-сверлильных станков. Наибольшее распространение получили станки общего назначения, в которых изделие располагается на плите или столе неподвижно, а шпиндель занимает вертикальное положение и перемещается в трёх направлениях: по окружностям вокруг вертикальной колонны, по радиусам этих окружностей и вертикально вдоль своей оси.
Для сверления не только вертикальных отверстий, но также наклонных и горизонтальных применяются универсальные радиально-сверлильные станки с поворотной шпиндельной головкой.
Если обрабатываемое изделие очень велико, используются радиально-сверлильные станки с колонной, перемещающейся по станине. Дальнейшее совершенствование таких станков привело к созданию самоходных радиально-сверлильных станков, которые могут передвигаться по рельсам.
Кроме передвижных станков при обработке крупногабаритных деталей находят применение также переносные радиально-сверлильные станки. Их переносят подъёмным краном к нужному месту и закрепляют рядом с изделием или непосредственно на нём.
Одной из разновидностей радиально-сверлильных станков являются настенные станки, в которых отсутствует плита и колонна.
Для сверления отверстий в листовом материале используют станки с малым осевым перемещением шпинделя и без плиты (изделие в этом случае кладётся на пол или на стеллаж). Разновидность таких станков – станки с шарнирным хоботом, на конце последнего звена которого укреплена шпиндельная головка.
Выпускают радиально-сверлильные станки общего назначения моделей 2А53, ОС-67, 2А55, 2М55, 2Б55, 257, 2Б57, 258 и 2Б58 с наибольшим диаметром сверления в стали средней твёрдости 35, 50, 75 и 100 мм.
Самый маленький из этих станков имеет наибольшее расстояние от оси шпинделя до наружной поверхности колонны (вылет) 1200 мм и весит 3 т; самый крупный – 4000 мм, а вес его 32 т.
Краткие технические характеристики отечественных радиально-сверлильных станков приведены в таблице 1.1.
За границей выпускают радиально-сверлильные станки общего назначения с диаметром сверления от 25 до 160 мм. Наибольший вылет шпинделя достигает 4500 мм.
Таблица 1.1 – Краткие технические характеристики отечественных
радиально-сверлильных станков
Характеристики Модели станков
2А53 2А55 257 258 2Г53 2А592 2П57
Наибольший условный диаметр сверления в стали, мм 53 50 75 100 35 25 75
Скорости главного движения, об/мин 50-2240 30-1700 11-1400 9-1000 30-1700 175-980 9-1000
Мощность приводного электродвигателя, квт 2,8 4,5 7,0 14,0 4,5 1,7 14
Вес, кн 30 40 103 195 60 7,5 340

Вертикальные, горизонтальные и наклонные отверстия в крупных деталях можно обрабатывать на переносных универсальных станках моделей 2А592, 2П55, 2П56, 2П57.
На станке 2П57 сверлят в стали отверстия диаметром до 75 мм. Станок установлен на салазках, которые механически перемещаются по станине. Вес этого уникального станка 35 т.
Созданы самоходные радиально-сверлильные станки моделей 2Д53А, ОС-97 и 2Д58 трёх типоразмеров с наибольшим диаметром сверления 35, 75 и 100 мм. Эти станки смонтированы на самоходной тележке, перемещающейся по нормальной железнодорожной колее. Обрабатываемые изделия (в большинстве случаев это металлические фермы мостов) располагают вдоль железнодорожного полотна. Станок своим ходом подъезжает к месту обработки, останавливается, крепко прихватывается к рельсам, после чего рабочий производит с его помощью необходимые технологические операции. Затем станок перемещается дальше.
Выпускают переносные радиально-сверлильные станки моделей 2А592, 2П55 и 2П56. Кроме них, переносным является также станок ОС-29, на котором можно сверлить в стали отверстия диаметром 125 мм и нарезать резьбу диаметром 160 мм. Правда, переносить этот станок нелегко, так как его длина около 6 м, высота превышает 6 м, а вес достигает 28 т.
Для обработки листового металла служат радиально-сверлильные станки 2Г53 и ОС-86.
На станке 2Г53 удобно выполнять разного рода сверлильные работы в невысоких изделиях большой площади. Наибольший диаметр сверления на этом станке 35 мм.
Станок ОС-86 снабжён двумя хоботами . На конце одного из них укреплена сверлильная головка, на конце другого – фрезерная. На этом станке сверлят отверстия диаметром до 8 мм в пакетах их тонких листов металла, а также разрезают их фрезой по шаблону. Таким образом, станок является комбинированным, сверлильно-фрезерным.
Радиально-сверлильные станки всех типов изготавливает Одесский завод радиально-сверлильных станков; универсальные переносные станки 2А592 – Витебский станкозавод им. Коминтерна.
Каждой модели станка присваивается особый номер. Для этого все универсальные станки разбиты на девять групп, в каждой из которых они разделены по разновидностям с присвоением им порядковых номеров.
Сверлильные и расточные станки отнесены ко второй группе. За разновидностями станков этой группы закреплены такие номера: вертикально-сверлильные 1, полуавтоматы 2 или 3, координатно-расточные 4, радиально-сверлильные 5, расточные 6, алмазно-расточные 7, горизонтально-сверлильные 8, разные сверлильные 9.
Номер (шифр) модели станка состоит из трёх или четырёх цифр. Иногда между цифрами или в конце их ставятся буквы русского алфавита. Первая цифра номера обозначает группу, к которой относится станок. Вторая цифра указывает тип станка в этой группе. Третья цифра, при четырёхзначном обозначении и четвёртая цифра условно определяют основной размер станка. Добавочные буквы указывают на конструктивные изменения данного типа станка.
Для сверлильных станков самым характерным размером является наибольший диаметр сверления, т. е. Диаметр такого отверстия, которое можно просверлить на этом станке в стали средней твёрдости быстрорежущим сверлом.
В номерах радиально-сверлильных станков применяемые буквы обычно имеют такие значения: буква А обозначает модернизацию (усовершенствование) предшествующей модели станка; буква Б говорит о том, что в данном станке вылет больше, чем в базовой модели станка с таким же диаметром сверления; буква Г характеризует станок без вертикального перемещения рукава; буква Д применяется для обозначения самоходных станков, перемещающихся по рельсам; буква П почти всегда обозначает переносный и имеется в номерах переносных и универсальных станков для обработки вертикальных, горизонтальных и наклонных отверстий.
Для обозначения специальных и специализированных станков каждому станкостроительному заводу присвоены две буквы. Порядковый номер специального станка в сочетании с буквами, обозначающими завод, даёт номер модели станка. Так, станок ОС-86 – это 86-я модель специального станка производства Одесского завода радиально-сверлильных станков.