http://www.ce-studbaza.ru/werk.php?id=9196
Проектування і розрахунок багатошпиндельної насадки
Багатошпиндельні насадки призначені для оснащення силових голівок з висувною пинолью. При цьому розташування шпинделів визначається розташуванням оброблюваних поверхонь.
Багатошпиндельна насадка складається з фланця, корпуса і дахівки, усередині яких розташовуються деталі, що передають рухи від приводного вала силової голівки до шпинделів. Корпус насадки встановлюється на скалках, що запресовані в державке, установленної на торці корпуса силової голівки. У фланці насадки мається циліндричний базовий отвір діаметром 100 мм, яким насадка встановлюється на пиноль голівки.
Змазування зубчастих коліс і підшипників насадки виконується методом створення масляного тумана. При горизонтальному расположении за допомогою вала із зірочкою-росприскувачем, а при вертикальном - за допомогою гвинтового насоса, який накачує рідину на верхні зубчасті колеса.
Проектована насадка буде виготовлятися в 3-х виконаннях для 1,2 і 4-го силових агрегатів. Розрізнятися вони будуть лише встановлюваємим у шпинделях різальним інструментом і режимами роботи (частотою обертання валів і навантаженнями).
Компонування насадки
Компонування насадки вибираємо виходячи з кількості і расположения шпинделів, осі яких збігаються з осями оброблюваних отворів у деталі. У проектованій насадці повинне бути 3 шпинделя (обробка 3-х східчастих отворів 25.0/29.0, розташованих на одній горизонтальній осі на відстані 42 мм друг від друга.
Застосовуємо найбільш просте компонування насадки (див. мал.3.2) з роздачею руху від ведучого вала до шпинделів однією зубцюватою передачею на кожен шпиндель. При цьому зубчасті передачі від ведучого вала до середнього шпинделя (обробка отвору 2) і до крайніх шпинделів (обробка отворів 1,3) розташовуємо в різних плоскостях уздовж осі шпинделів (у різних шарах розкочування). У такий спосіб на ведучому (приводному) валу насадки буде встановлено 2 зубцюватих колеса.
Параметри компонування насадки наступні:
1) по 1РТМ05-77 вибираємо симетричну уніфіковану компоновку корпусних деталей насадки з відстанню між качалками 200 мм (корпус УНМ 40103.01-01, кришка УНМ 40203.01-02, фланець УНМ 40303.21-02, державка УНМ 40403.13-01). Ведучий вал голівки встанавлюваємо на відстані 44 мм від горизонтальної осі обробляємих отворів деталі, встановленої в затискному пристосуванні. Відстань від осі ведучого вала до осі качалок приймаємо 70 мм;
2) від ведучого вала 4 до шпинделів 1,3 установлюємо по однієї передачі Z4/Z1, Z4/Z3 у площині В (консольно на шпинделях);
3) до шпинделя 2 передаємо рух передачею Z4’ / Z2, установленої в площині Б;
4) розташування силової голівки з проектованою насадкою - горизонтальне, тому установлюємо вал-розбризкувач для створення масляного туману в порожнині насадки (вал 5, поз. по кресленню насадки). Обертання до нього передаємо від приводного вала передачею Z4 / Z5;
5) установлюємо додатковий вал у насадці з виступаючим у сторону різальних інструментів шестигранним отвором під ключ. Це необхідно для втримання шпинделів насадки від проворота при знятті й установці різальних інструментів.
Вибираємо уніфіковані складальні одиниці і деталі насадки по 1РТМ05-77 (шпиндельні вузли, що веде вал, вал-розбризкувач, додатковий валик, шестірні й інші). Їхнього позначення і найменування приведені в специфікації до насадки.
Кінематичний і геометричний розрахунок насадки
Передатні відносини від ведучого вала до шпинделів прийняті рівними 1.0 (при виборі параметрів налагодження голівки).
Виходячи з прийнятих передатних відносин і рівності міжосьових відстаней, а також розташування оброблюваних отворів у деталі, виконуємо паралельно кінематичний розрахунок (визначаємо числа зубів зубчастих коліс) і розрахунок координат отворів (розточень) у корпусі насадки. Вихідні дані для розрахунку приведені в таблиці 3.6.
1) Початок координат сполучаємо з віссю лівої скалки (з боку інструментів). Тоді координати осі розточень під качалки будуть рівні:
X7 = 0, Y7 =0; Х8 = 200.0 мм, Y8 = 0 мм
Таблиця 3.6. Режими роботи виконань проектованої насадки
N сил.
агрег. n вед.вала
об/хв n шпинд
об/хв Ро, Н Мкр,
Нм
1 594 594 164 6.7
2 526 526 166 8.02
4 479 479 97 5.05
2) Положення ведучого (приводного) вала голівки (і насадки) приймаємо по центрі насадки між качалками: X4 = 100, Y4 = 70;
3) Налагоджена частота обертання приводного вала силовий голівки, на якій установлена проектована насадка, дорівнює nвв = 594 об/хв. Частота обертання шпинделів насадки також буде дорівнює nш = 594 об/хв (передатне відношення дорівнює 1.0).
Отже, Z4/Z1 = Z4/Z3 =Z4’ / Z2 = 1.0 і числа зубів зубчатых коліс попарно рівні між собою Z4 =Z1 = Z3 і Z4 = Z2;
4) По прийнятій міжосьовій відстані між ведучим валом і віссю другого шпинделя а4-2=44.0 мм і модулю зубчастих передач m=2.0 мм визначаємо числа зубів зубчастих коліс передачі Z4 / Z2.
Z4 = Z2 = (2*a4-2 / m) / (1+u), (3.11)
У вираженні (3.11) u - передаточне число передачі (u=1). Підставляючи значення змінних у (3.11), одержуємо Z4 = Z2 = (2*44/2) / (1+1)= 22;
5) Для розрахунку чисел зубів передач Z4/Z1 і Z4/Z3 визначаємо міжосьові відстані між ведучим валом і шпинделями 1 і 3. При цьому виходимо з відстані між сусідніми шпинделями а2-1= а2-3= 42.0 мм. З трикутника 4-2-1(див.мал.3.3) знаходимо
Потім по вираженню (3.11) знаходимо числа зубів
Z4 = Z1 = Z3 = (2*60.827 / 2) / (1+1) = 30.414
Число зубів зубчастих коліс повинне бути цілим, тому получене значення необхідно округлити. Тут можливо декілька варіантів:
а) можна прийняти число зубів одного з коліс рівним 30, а другого 31, виконуючи одне з них з негативним коефіцієнтом корекції. При цьому буде мати місце відхилення від прийнятого передатного відношення;
б) прийняти всі числа зубів рівними 31 із сумою зубів 62 і с негативними коефіцієнтами корекції. Однак у цьому випадку знижується згинальна міцність зубів;
в) прийняти всі числа зубів рівними 30 із сумою зубів 60 і с позитивними коефіцієнтами корекції. Це приводить до підвищення згинальної міцності зубів (збільшується товщина ніжки зуба).
У такий спосіб зупиняємося на варіанті в) і приймаємо Z4 = Z1 = Z3 = 30. Коефіцієнти корекції визначимо при перевірочному розрахунку зубчастих передач.
Числа зубів ведених коліс передач до валу-розприскувачу і додатковому валу приймаємо рівним Z5 = Z9 = 20. Тоді частота обертання вала-розприску-вача буде рівною
n5 = n9 = nвв * Z4 / Z5 = 594 * 30 / 20 = 891 об/хв.
6) Визначаємо координати розташування осей шпинделів 1 і 3:
Х1 = Х2 - а2-1 = 100 - 42 = 58.0 мм,
Х3 = Х2 + а2-3 = 100 + 42 = 142.0 мм,
Y1 = Y3 = Y2 = 114.0 мм;
7) Визначаємо координати осей вала розприскувача і додаткового вала. При цьому варто врахувати, що ведуче колесо до цих валів Z4 буде корригированным, а ведені шестірні Z5 і Z9 без зсуву вихідного контуру.
а) визначаємо міжосьову відстань передач Z4/Z5 і Z4/Z9.
Колеса Z5 і Z9 приймаємо без зсуву з уніфікованого набору по 1РТМ05-77. Для визначення міжосьової відстані необхідно визначити коефіцієнт корекції колеса Z4. У передачах від вала 4 до шпинделів 1 і 3 має місце корекція, що вирівнює, на необхідну міжосьову відстань а=60.827 мм [ ]. Кут зачеплення цих передач
cos(w) = m*(Z1 +Z4) * cos() / 2*w (3.12)
Сумарний коефіцієнт корекції
Xc = X1 + X2 = (Z1 + Z4) * (invw - inv) / 2*tg, (3.13)
inv = tg - .
Коефіцієнти корекції кожного колеса визначаємо розбиваючи
сумарний коефіцієнт Xc пропорційно їхньому числу зубів
X1 = X2 = Xc * Z1 / (Z1 + Z4), (3.14)
Початкові діаметри коліс Z1 і Z4:
dw4 = dw1= 2 * aw * Z4 / (Z1 + Z4), (3.15)
По виразам (3.12)-(3.15) виконуємо розрахунок
cos(w) = 2*(30+30)*cos(20)/2*60.827 = 0.9269166
w = arccos(0.9269166) = 22.0408 градуса
Xc = (30+30) * (inv22.0408 - inv20) / 2*tg20 =
= 60*(0.02017 - 0.0149) / (2*0.364) = 0.434038.
Приймаємо Xc = 0.43404, тоді X1 = X2 = 0.43404 * 30 / 60 = 0.21702
і початкові діаметри коліс 1,3 і 4 будуть рівні
dw4 = dw1 = dw3 = 2*60.827*30/(30+30) = 60.827.
б) Приймаємо положення осі вала-розбризкувача (вал 5) по осі Х співпадаючим з центром насадки Х5 = 0. Координату Y визначаємо по зачепленню колеса Z5 c ведучим колесом Z4. Колесо Z5 приймаємо без зсуву. Його початковий і ділильний діаметр буде дорівнює:
dw5 = d5 = m*Z5 = 2*20 = 40 мм
Міжосьова відстань між валами 4 і 5, 4 і 9 буде дорівнює міжосьовій відстані зачеплення пари зубчастих коліс Z4 і Z5
a4-5 = a4-9 = aw = (dw5 + dw4) / 2 = (40+60.827)/2 = 50.4135 мм.
в) Приймаємо положення осі додаткового вала 9 по вертикалі стосовно осі вала 4 зміщеним униз на величину Y=18 мм. Тоді Y9 = Y4 - 18 = 70-18 = 52 мм, а друга координата
X9 = X4 + а4-92 - X2 = 100 + 50.41352 - 182 = 100 + 47.091 = 147.091 мм
Розраховані значення координат отворів у корпусі насадки приведені в таблиці на кресленні насадки.
Перевірочний розрахунок на міцність основних деталей насадки
1. Розраховуємо навантаження на валах і передачах насадки з обліком КПД передач і підшипників. КПД зубчастої передачі зп = 0.98, а пари підшипників кочення (пп = 0.99-0.995. Їх загальний КПД (п = 0.97.
За кінематичною схемою(мал.3.2 ) і схемі компонування валів насадки (мал.3.3 ) визначаємо діючі на валах моменти що крутять . Результати оформляємо у виді таблиці 3.6.
Таблиця 3.6. Моменти, що крутять, і осьові сили на шпинделях і валах
насадки
№
вала Ро, Н Мкр, Нм Формула для розрахунку
1 166.0 8.02
2 166.0 8.02
3 166.0 8.02
4 0 28.01 (М1+М2+М3) / (о
Загальний КПД насадки:
Потужність на ведучому валу Nвв = Nрез / о = 1.33 / 0.859 = 1.548 квт.
2. Розрахунок зубчастої передачі Z4/Z1
Колесо Z4 є ведучим для шпинделів 1,3 і валів - розприскувача і додаткового і на ньому суммируются всі навантаження.
Розрахунок виконуємо на ЕОМ з використанням пакета прикладних программ (ППП) АПП - Автоматизоване проектування передач , розробленому в МВТУ ім. Баумана. По цій програмі можна виконати розрахунок будь-якої передачі з одержанням креслення основної деталі (зубчастого колеса) у системі AutoCAD.
Вихідними даними для розрахунку є:
1) модуль передачі m=2.0 мм;
2) міжосьова відстань а=60.827 мм (за умовами компонування насадки);
3) момент, що крутить, на колесі Z4: М4 = 28.01 Нм;
4) частота обертання коліс: n=594 об/хв;
5) ресурс(термін служби) передачі: Т=20000 годин.
Повний набір вихідних даних і результати розрахунку передачі
приведено нижче.
З розрахунку обоє колеса Z1 і Z4 є коригованими з коефіцієнтом зсуву Х1 = Х2 = 0.217. При заданій міжосьовій відстані і модулі ширина обох коліс отримана рівної 9 мм. Уніфіковані колеса, з яких скомпонована насадка, мають ширину 12 мм. Це показує, що вони мають значний запас міцності (витривалості) при вихідному режимі нагружения передачі.
За допомогою системи АПП отримане креслення колеса Z4, що при-
ведене у додатку (креслення МШ50.7090203.10К-09).
На сайте СтудБаза есть возможность скачать БЕСПЛАТНО скачать студенческий материал по техническим и гуманитарным специальностям: дипломные работы, магистерские работы, бакалаврские работы, диссертации, курсовые работы, рефераты, задачи, контрольные работы, лабораторные работы, практические работы, самостоятельные работы, литература и многое др..
воскресенье, 14 января 2018 г.
Проектування кондукторів
http://www.ce-studbaza.ru/werk.php?id=9195
Проектування кондукторів
Конструкція кондуктора
Рухливі кондуктори призначені для оснащення силових голівок при багатоперхідній обробці отворів для направлення ріжучих інструментів. Усі деталі кондукторів уніфіковані крім кондукторних плит, форма і розміри яких залежать від конфігурації оброблюваної деталі і набору виконуваних технологічних операцій.
Обробка по кондукторі використовується на перших 4-х позиціях (робочих станціях) при виконанні операцій свердління, зенкерування і зенкування фасок (позиції 22-25 по складальному кресленню верстата МШ50.7090203.10К-03).
У дипломному проекті спроектований кондуктор для розсвердління і зенкерування 3-х східчастих отворів Æ25/31 1,2 і 4-м силовыми агрегатами.
Кондуктор (креслення МШ50.709090203.10К-05) переміщається по двох направляючим скалках (УНМ509.01.01-05). Рух кондукторові подається від шпиндельної насадки, що одержує рух від пиноли силової голівки. Насадка штовхає вперед кондукторну планку 10, у яку встанавлені 3 кондукторні втулки 20 для напрямку ріжучих інструментів. Кондукторна планка закріплена на двох повзушках 7,8 (1УДН019).
Між корпусом шпиндельної насадки і ползушками (поз.7,8) на втулках 3 (УДИ042 -01) установлені дві пружини 22 (див. креслення кондуктора), що забезпечують силове замикання плити кондуктора на корпус затискного пристосування (втулок 1 на палец-ловитель затискного пристосування) і, тим самим, фіксоване положення кондукторної втулки і, відповідно, осі що ріже инструментів щодо оброблюваної деталі.
Положення кондуктора щодо повзуна в напрямку робочої подачі обмежується спеціальним пристроєм, що складається з тяги 19, знімного упора 9, труби 2 і гайок 14. Цим же пристроєм регулюється зусилля попереднього стиску пружин 22. Для зміни інструментів кондукторна плита може бути відсунута від корпуса насадки на необхідну відстань. Ця можливість забезпечується знімним упором, відсутність якого дозволяє проходити трубі в паз корпуса повзуна до упора шайби і гайок у цей корпус.
Розрахунок пружини кондуктора
Розраховуємо кручену циліндричну пружину стиску з проволоки круглого перетину за методикою, приведеної в [3, т.3, с.97-146]. Приймаємо клас пружини II, розряд 2 [3,табл.1 і табл.2] із границею циклічної витривалості N=100000 циклів. Вихідними даними для розрахунку є: зовнішній діаметр базових утулок кондуктора, на який удягаються пружини Dвт=50 мм; допускне зусилля подачі силової голівки Рп=4200Н; сумарне діюче зусилля подачі Рд=
498 Н; довжина робочого ходу інструмента Lрх=28 мм.
1) Зусилля попереднього стиску пружини Р1=160 Н;
2) Зусилля пружини, стиснутої в робочому стані (наприкінці рабочого ходу пиноли силової голівки) Р2 = 400 Н (P2 < Рп-Рд);
3) Величина робочого стиску пружини h = Lрх = 28 мм;
4) Найбільша швидкість переміщення рухливого кінця пружини
Vo = Lxx / txx,
Lxx = 2*80 - Lрх = 160 - 28 = 132 мм,
txx = tц - tрх, tц = 20.53 с,
tрх = 60*Lрх / (Sон*nн) = 60*28 / (0.249*526) = 12.83 с,
txx = 20.53 - 12.83 = 7.7 c,
Vo = (132 / 7.7) / 1000 = 0.017 м/с;
5) Зовнішній діаметр пружини приймаємо D=60 мм, діаметр про-
волоки d=5.0 мм;
6) Відносний інерційний зазор d = 0.05-0.25 для пружин стиску II класу;
7) Сила пружини при максимально деформації
Р3 = Р2 / (1 - d) = 400 / (1 - (0.05..0.25)) = 422... 534 Н.
По таблиці 15 [3] приймаємо пружину номер 470 з Р3 = 530 Н,
твердістю одного витка Z1 = 37.56 Н/мм і найбільшим прогином одного витка
f3 = 14.11 мм.
8) Максимальне дотичне напруження при крутінні [3, табл.2] t3 = 0.5*sв = 0.5*1600 = 800 Н/мм2;
9) Критична швидкість пружини Vкр = t3*(1-Р2 / Р3) / 35.8 =
= 800 * (1-400/530)/35.8 = 5.48 м/с.
Модуль зрушення пружинної сталі G = 8*105 Н/мм2, щільність материала пружини r = 8*10-9 Н*с2/мм4.
Перевіряємо на відсутність зіткнення витків по інерції по умові V0 / Vкр < 1.0, 0.017 / 5.48 = 0.0031, має місце значний запас.
10) Жорсткість пружини z = (Р2 - Р1) / h = (400-160)/9 = 26.67 Н/мм;
11) Число робочих витків n = Z1 / Z = 37.56 / 26.67 = 1.41 = 2;
12) Повне число витків n1 = n + n2, де n2 = 2 - число опорних витків,
n1 = 2+2 = 4;
13) Середній діаметр пружини D0 = D - d = 60 - 5 = 55 мм;
14) Індекс пружини c = D0 / d = 55/5 = 11. Цей параметр характеризує стійкість пружини при великій величині стиску. Рекомендується с = 4..12;
15) Величина попереднього стиску (деформації) пружини F1 = P1 / z = 160 / 26.67 = 6.0 мм;
16) Максимальна деформація при зіткненні витків F3 = P3 / Z = 530/26.67 = 19.87 мм;
17) Висота пружини при максимальній деформації (n3 – число зашліфованих витків):
H3 = (n1 - n3 + 1) * d = (4 – 1 + 1) * 5 = 20 мм;
18) Висота пружини у вільному стані:
H0 = H3 + F3 = 20+19.87 = 39.87 мм;
19) Висота пружини при попередній деформації:
H1 = H0 - F1 = 39.87 - 6.0 = 33.87 мм;
20) Висота пружини при робочій деформації (наприкінці робочого ходу насадки з інструментами):
H2 = H0 - F2 = 39.87 - 9 = 30.87 мм;
21) Крок пружини t = f3 + d = 14.11 + 5 = 19.11 мм;
22) Довжина розгорнутої пружини
L = 3.2 * D0 * n1 = 3.2 * 55 * 4 = 704 мм;
23) Маса пружини
М = 19.25 * 10-6 * D0 * d2 *n1 = 19.25 * 10-6 * 55 * 52 * 4 = 0.106 кг.
Проектування кондукторів
Конструкція кондуктора
Рухливі кондуктори призначені для оснащення силових голівок при багатоперхідній обробці отворів для направлення ріжучих інструментів. Усі деталі кондукторів уніфіковані крім кондукторних плит, форма і розміри яких залежать від конфігурації оброблюваної деталі і набору виконуваних технологічних операцій.
Обробка по кондукторі використовується на перших 4-х позиціях (робочих станціях) при виконанні операцій свердління, зенкерування і зенкування фасок (позиції 22-25 по складальному кресленню верстата МШ50.7090203.10К-03).
У дипломному проекті спроектований кондуктор для розсвердління і зенкерування 3-х східчастих отворів Æ25/31 1,2 і 4-м силовыми агрегатами.
Кондуктор (креслення МШ50.709090203.10К-05) переміщається по двох направляючим скалках (УНМ509.01.01-05). Рух кондукторові подається від шпиндельної насадки, що одержує рух від пиноли силової голівки. Насадка штовхає вперед кондукторну планку 10, у яку встанавлені 3 кондукторні втулки 20 для напрямку ріжучих інструментів. Кондукторна планка закріплена на двох повзушках 7,8 (1УДН019).
Між корпусом шпиндельної насадки і ползушками (поз.7,8) на втулках 3 (УДИ042 -01) установлені дві пружини 22 (див. креслення кондуктора), що забезпечують силове замикання плити кондуктора на корпус затискного пристосування (втулок 1 на палец-ловитель затискного пристосування) і, тим самим, фіксоване положення кондукторної втулки і, відповідно, осі що ріже инструментів щодо оброблюваної деталі.
Положення кондуктора щодо повзуна в напрямку робочої подачі обмежується спеціальним пристроєм, що складається з тяги 19, знімного упора 9, труби 2 і гайок 14. Цим же пристроєм регулюється зусилля попереднього стиску пружин 22. Для зміни інструментів кондукторна плита може бути відсунута від корпуса насадки на необхідну відстань. Ця можливість забезпечується знімним упором, відсутність якого дозволяє проходити трубі в паз корпуса повзуна до упора шайби і гайок у цей корпус.
Розрахунок пружини кондуктора
Розраховуємо кручену циліндричну пружину стиску з проволоки круглого перетину за методикою, приведеної в [3, т.3, с.97-146]. Приймаємо клас пружини II, розряд 2 [3,табл.1 і табл.2] із границею циклічної витривалості N=100000 циклів. Вихідними даними для розрахунку є: зовнішній діаметр базових утулок кондуктора, на який удягаються пружини Dвт=50 мм; допускне зусилля подачі силової голівки Рп=4200Н; сумарне діюче зусилля подачі Рд=
498 Н; довжина робочого ходу інструмента Lрх=28 мм.
1) Зусилля попереднього стиску пружини Р1=160 Н;
2) Зусилля пружини, стиснутої в робочому стані (наприкінці рабочого ходу пиноли силової голівки) Р2 = 400 Н (P2 < Рп-Рд);
3) Величина робочого стиску пружини h = Lрх = 28 мм;
4) Найбільша швидкість переміщення рухливого кінця пружини
Vo = Lxx / txx,
Lxx = 2*80 - Lрх = 160 - 28 = 132 мм,
txx = tц - tрх, tц = 20.53 с,
tрх = 60*Lрх / (Sон*nн) = 60*28 / (0.249*526) = 12.83 с,
txx = 20.53 - 12.83 = 7.7 c,
Vo = (132 / 7.7) / 1000 = 0.017 м/с;
5) Зовнішній діаметр пружини приймаємо D=60 мм, діаметр про-
волоки d=5.0 мм;
6) Відносний інерційний зазор d = 0.05-0.25 для пружин стиску II класу;
7) Сила пружини при максимально деформації
Р3 = Р2 / (1 - d) = 400 / (1 - (0.05..0.25)) = 422... 534 Н.
По таблиці 15 [3] приймаємо пружину номер 470 з Р3 = 530 Н,
твердістю одного витка Z1 = 37.56 Н/мм і найбільшим прогином одного витка
f3 = 14.11 мм.
8) Максимальне дотичне напруження при крутінні [3, табл.2] t3 = 0.5*sв = 0.5*1600 = 800 Н/мм2;
9) Критична швидкість пружини Vкр = t3*(1-Р2 / Р3) / 35.8 =
= 800 * (1-400/530)/35.8 = 5.48 м/с.
Модуль зрушення пружинної сталі G = 8*105 Н/мм2, щільність материала пружини r = 8*10-9 Н*с2/мм4.
Перевіряємо на відсутність зіткнення витків по інерції по умові V0 / Vкр < 1.0, 0.017 / 5.48 = 0.0031, має місце значний запас.
10) Жорсткість пружини z = (Р2 - Р1) / h = (400-160)/9 = 26.67 Н/мм;
11) Число робочих витків n = Z1 / Z = 37.56 / 26.67 = 1.41 = 2;
12) Повне число витків n1 = n + n2, де n2 = 2 - число опорних витків,
n1 = 2+2 = 4;
13) Середній діаметр пружини D0 = D - d = 60 - 5 = 55 мм;
14) Індекс пружини c = D0 / d = 55/5 = 11. Цей параметр характеризує стійкість пружини при великій величині стиску. Рекомендується с = 4..12;
15) Величина попереднього стиску (деформації) пружини F1 = P1 / z = 160 / 26.67 = 6.0 мм;
16) Максимальна деформація при зіткненні витків F3 = P3 / Z = 530/26.67 = 19.87 мм;
17) Висота пружини при максимальній деформації (n3 – число зашліфованих витків):
H3 = (n1 - n3 + 1) * d = (4 – 1 + 1) * 5 = 20 мм;
18) Висота пружини у вільному стані:
H0 = H3 + F3 = 20+19.87 = 39.87 мм;
19) Висота пружини при попередній деформації:
H1 = H0 - F1 = 39.87 - 6.0 = 33.87 мм;
20) Висота пружини при робочій деформації (наприкінці робочого ходу насадки з інструментами):
H2 = H0 - F2 = 39.87 - 9 = 30.87 мм;
21) Крок пружини t = f3 + d = 14.11 + 5 = 19.11 мм;
22) Довжина розгорнутої пружини
L = 3.2 * D0 * n1 = 3.2 * 55 * 4 = 704 мм;
23) Маса пружини
М = 19.25 * 10-6 * D0 * d2 *n1 = 19.25 * 10-6 * 55 * 52 * 4 = 0.106 кг.
Пристосування для настроювання металоріжучих інструментів
http://www.ce-studbaza.ru/werk.php?id=9192
Пристосування для настроювання металоріжучих інструментів
Пристосування для настроювання металоріжучих інструментів
Короткий огляд конструкцій агрегатних верстатів
http://www.ce-studbaza.ru/werk.php?id=9191
Короткий огляд конструкцій агрегатних верстатів.
Агрегатні верстати розрізняються набором уніфікованих вузлів і агрегатів, тобто елементною базою, на основі якої вони проектуються і виготовляються. В даний час існує класифікація [19,20] агрегатних верстатів по габаритах оброблюваних на них деталей. За цією ознакою вони підрозділяються на три групи, що відрізняються розмірами, масою і використовуваними уніфікованими вузлами: малогабаритні і малі агрегатні верстати, оснащені невеликими по розмірах силовими агрегатами потужністю 0.18-0.75 квт; агрегатні верстати середніх розмірів, із силовими вузлами потужністю 1.1 - 3 квт; агрегатні верстати великих розмірів, оснащені гідравлічними чи електромеханічними столами, на яких установлюються шпиндельні вузли різного технологічного призначення.
Малогабаритні верстати і верстати середніх розмірів випускалися Харківським заводом агрегатних верстатів (ХЗАС) на основі силових агрегатів, що випускалися серійно Глухівським заводом агрегатних вузлів (ГЗАУ). Агрегатні верстати великих і середніх розмірів випускалися Мінським заводом автоматичних ліній (МЗАЛ) і Московським станкозаводом ім.Орджонікідзе. Мається значна кількість іноземних фірм, що проектують і випускають агрегатні верстати різних типорозмірів. Це фірми Cross, Exello (США), Рено - Франція, Haberzang, Heller - Німеччина, Olivetti - Італія й інші.
Відмінною рисою агрегатних верстатів у порівнянні з іншими видами металорізального устаткування є те, що в процесі обробки деталь нерухома, а всі робочі і допоміжні рухи роблять різальні інструменти. Це вносить певні обмеження на їхнє компонування і технологічні можливості. По компонуванню і характеру позиционирования оброблюваних деталей агрегатні верстати поділяються на наступні групи [19,20]:
А) стаціонарні чи однопозиційні. У цих верстатах деталь не транспортується, тобто має місце одна операційна станція, на якій може бути встановлено кілька силових агрегатів, що виконують обробку однієї деталі одночасно. При значному часі обробки стаціонарне пристосування виконують багатомісним для забезпечення заданої продуктивності шляхом одночасної обробки декількох деталей;
Б) багатопозиційні агрегатні верстати з поворотним ділильним столом, планшайба якого з установленими на ній затискними пристосуваннями з оброблюваними деталями обертається навколо вертикальної осі. Верстати з поворотним столом застосовуються для багатобічної обробки невеликих заготівель. Завантаження заготівлі і розвантаження обробленої деталі виконуються під час обробки на робочих позиціях, число таких позицій може досягати 12.
По характері розташування пристосувань з оброблюваними деталями й операційними станціями з різальними інструментами верстати цього типу можуть мати три різновиди компонування:
1) периферійні, у яких затискні пристосування з заготівлями розташовані по периферії планшайби поворотного столу і транспортуються (позиционуються) між операційними станціями з блоками різальних інструментів таким чином, що кожна операційна станція(блок інструментів) обробляє заготівлю в одній робочій позиції. При такім компонуванні обробка у всіх робочих позиціях виконується одночасно і готова деталь знімається після кожного повороту планшайби на одну позицію. Застосовують такі компонування у випадку наявності багатоперехідної обробки поверхонь і вимозі високої продуктивності;
2) центральні, у яких одне затискне пристосування з однією оброблюваною деталлю розташовано в центрі планшайби поворотного столу і позиционується навколо своєї осі симетрії щодо операційних станцій, розташованих навколо поворотного столу. Такі компонування застосовують при обробці набору регулярних поверхонь в оброблюваній деталі, тобто однакових, рівномірно-розташованих навколо осі деталі на визначеному радіусі. Готова деталь при цьому знімається за один повний оборот планшайби поворотного столу;
3) з кільцевим столом і центральною колоною, на гранях якої встановлюються силові агрегати. Таке компонування дозволяє забезпечити більш високу концетрацию операцій, обробку деталі з більшого числа сторін. Однак, цей вид компонування є менш технологичным у виготовленні й експлуатації, тому що утруднений доступ до силових агрегатів і різальних інструментів, розташованим на центральній колоні усередині планшайби кільцевого столу.
По характері взаємодії блоків інструментів силових агрегатів з робочими позиціями компонування типу Б можуть бути двох різновидів: а) з індивідуальними операційними станціями(силовими агрегатами) на кожній позиції (див. мал.1.1);
б) із загальними силовими агрегатами (чи одним силовим агрегатом) на кілька робочих позицій чи відразу на всі позиції. Останній варіант, коли один вертикально розташований силовий агрегат з багатошпиндельною коробкою і різальними інструментами в її шпинделях виконує обробку у всіх робочих позиціях, називають компонуванням, що накриває. Таке компонування характерне для великих агрегатних верстатів виробництва МЗАЛ і Московського станкозаводу.
На мал.1.1 приведений приклад верстата з компонуванням типу Б1а, на мал.1.2 - типу Б1б, на мал.1.3 - типу Б3;
В) компонування з багатопозиційним поворотним барабаном, що обертається навколо горизонтальної осі (багатопозиційні барабанного типу). Обробка в них можлива одночасно з двох протилежних сторін. Силові агрегати розташовуються по торцях поворотного барабана. Приклад верстата з таким компонуванням приведений на мал.1.4;
Г) багато- чи однопозиційні верстати з прямолінійним поступальним рухом позиционирования. Такі агрегатні верстати застосовуються для обробки (за кілька проходів) великогабаритних деталей, а також для виконання повторюваних операцій. При такім компонуванні верстата зручно виконувати двосторонню обробку. Прямолінійний поступальний рух столу використовується для введення заготівлі в зону обробки і висновку обробленої деталі. На мал.1.5 приведений приклад верстата з прямолінійним рухом позиціонування фірми Хилле. Верстат має 3 позиції, з яких 2 робочі й одна завантажувально-розвантажувальна.
При проектуванні і виробництві агрегатних верстатів використовуються уніфіковані функціональні вузли єдиної гами, що поділяються на чотири основні групи: силові, шпиндельні(вузли технологічного оснащення силових вузлів), базові і транспортні. Крім цього, функціональна структура[19] агрегатних верстатів містить у собі систему керування (электро-, гидро- і пневмооборудование), систему змазування рухливих елементів, систему охолодження зони різання і систему відводу стружки. У випадку автоматизації у верстаті компонуються також вузли завантаження-вивантаження оброблюваних деталей і контролю оброблюваних поверхонь. Обов язково проектується і поставляється з верстатом пристрій для настроювання різальних інструментів після їхнього переточування.
Силові агрегати компонуються на основі силових вузлів двох типів: силових голівок і силових столів, на які встановлюються шпиндельні вузли технологічного оснащення. Силові голівки реалізують у своїй конструкції всі рухи різальних інструментів - головне (звичайно обертальне) і циклові рухи - рух подачі і допоміжні (швидкий відвід, підведення, вистій і т.д.). Силові столи реалізують (забезпечують) тільки циклові рухи.
По використовуваному виді енергії силові вузли можуть бути электро-механичними, гідравлічними, пневматичними і комбінованими. Электро-механичні силові голівки по конструкції механізму подач бувають: пинольного типу з плоско-кулачковим чи барабанно-кулачковим приводом, із гвинтовим приводним механізмом рухливого корпуса голівки й інші.
Для виконання конкретних типів технологічних операцій силові вузли оснащуються спеціальними шпиндельними вузлами (начіпними пристосуваннями). На платформу силових столів установлюються шпиндельні (свердлильні, фрезерні, розточувальні й інші) бабки чи багатошпиндельні коробки. Силові голівки оснащуються такого ж типу пристосуваннями, що називають насадками, тому що в голівці вже мається шпиндель чи приводний вал, що одержує обертання від одного з приводом подачі двигуна.
В агрегатних верстатах середнього типорозміру, що випускалися ХЗАС, яким буде і проектований верстат, застосовують силові агрегати на основі плоскокулачкової пинольної силової голівки У1Х4035 і електромеханічних силових столів із гвинтовим приводом УЕ4530.
Силова голівка пинольного типу з плоскокулачковым механізмом подачі використовується для свердління, зенкерування, розгортання, торцування і нарізування різьблення. При оснащенні спеціальними пристосуваннями за допомогою голівки можна виконати фрезерування, обточування і розточування кільцевих канавок в отворах. Передбачено можливість оснащення голівки багатошпиндельною насадкою, механізмом зворотного ходу, механізмом двосторонньої обробки, фрезерною насадкою й іншими пристроями. Голівка може встановлюватися в горизонтальному, вертикальному чи похилому положенні.
Як транспортний пристрій для періодичного переміщення встановлених у пристосуваннях оброблюваних деталей з однієї позиції на іншу з точною фіксацією (позиціонуванням) їх на кожній позиції, в агрегатних верстатах з компонуванням типу Б1 і Б2 застосовують поворотно-ділильні столи, що розрізняють-ся конструкцією привода повороту планшайби і її діаметром. Як привод повороту використовуються электро- і гидро-механічні приводи з зубцюватими, черв ячни-ми і мальтійськими механізмами реалізації періодичних рухів. В агрегатних верстатах виробництва ХЗАС застосовують електромеханічні поворотні столи з мальтійським механізмом повороту внутрішнього зачеплення. Число позицій планшайби цих столів складає 2 - 12. Ці столи випускають з діаметром планшайби 500, 630 і 800 мм.
До уніфікованих базових вузлів і деталей агрегатних верстатів відносяться корпусні деталі несущої системи: станини, стійки, підкладки й інші. Елементи (вузли і деталі) інших функціональних систем агрегатних верстатів (затискних пристосувань, систем змазування, охолодження, відводу стружки й інших) є частково уніфікованими чи створюються на основі документації типових проектів цих вузлів.
Короткий огляд конструкцій агрегатних верстатів.
Агрегатні верстати розрізняються набором уніфікованих вузлів і агрегатів, тобто елементною базою, на основі якої вони проектуються і виготовляються. В даний час існує класифікація [19,20] агрегатних верстатів по габаритах оброблюваних на них деталей. За цією ознакою вони підрозділяються на три групи, що відрізняються розмірами, масою і використовуваними уніфікованими вузлами: малогабаритні і малі агрегатні верстати, оснащені невеликими по розмірах силовими агрегатами потужністю 0.18-0.75 квт; агрегатні верстати середніх розмірів, із силовими вузлами потужністю 1.1 - 3 квт; агрегатні верстати великих розмірів, оснащені гідравлічними чи електромеханічними столами, на яких установлюються шпиндельні вузли різного технологічного призначення.
Малогабаритні верстати і верстати середніх розмірів випускалися Харківським заводом агрегатних верстатів (ХЗАС) на основі силових агрегатів, що випускалися серійно Глухівським заводом агрегатних вузлів (ГЗАУ). Агрегатні верстати великих і середніх розмірів випускалися Мінським заводом автоматичних ліній (МЗАЛ) і Московським станкозаводом ім.Орджонікідзе. Мається значна кількість іноземних фірм, що проектують і випускають агрегатні верстати різних типорозмірів. Це фірми Cross, Exello (США), Рено - Франція, Haberzang, Heller - Німеччина, Olivetti - Італія й інші.
Відмінною рисою агрегатних верстатів у порівнянні з іншими видами металорізального устаткування є те, що в процесі обробки деталь нерухома, а всі робочі і допоміжні рухи роблять різальні інструменти. Це вносить певні обмеження на їхнє компонування і технологічні можливості. По компонуванню і характеру позиционирования оброблюваних деталей агрегатні верстати поділяються на наступні групи [19,20]:
А) стаціонарні чи однопозиційні. У цих верстатах деталь не транспортується, тобто має місце одна операційна станція, на якій може бути встановлено кілька силових агрегатів, що виконують обробку однієї деталі одночасно. При значному часі обробки стаціонарне пристосування виконують багатомісним для забезпечення заданої продуктивності шляхом одночасної обробки декількох деталей;
Б) багатопозиційні агрегатні верстати з поворотним ділильним столом, планшайба якого з установленими на ній затискними пристосуваннями з оброблюваними деталями обертається навколо вертикальної осі. Верстати з поворотним столом застосовуються для багатобічної обробки невеликих заготівель. Завантаження заготівлі і розвантаження обробленої деталі виконуються під час обробки на робочих позиціях, число таких позицій може досягати 12.
По характері розташування пристосувань з оброблюваними деталями й операційними станціями з різальними інструментами верстати цього типу можуть мати три різновиди компонування:
1) периферійні, у яких затискні пристосування з заготівлями розташовані по периферії планшайби поворотного столу і транспортуються (позиционуються) між операційними станціями з блоками різальних інструментів таким чином, що кожна операційна станція(блок інструментів) обробляє заготівлю в одній робочій позиції. При такім компонуванні обробка у всіх робочих позиціях виконується одночасно і готова деталь знімається після кожного повороту планшайби на одну позицію. Застосовують такі компонування у випадку наявності багатоперехідної обробки поверхонь і вимозі високої продуктивності;
2) центральні, у яких одне затискне пристосування з однією оброблюваною деталлю розташовано в центрі планшайби поворотного столу і позиционується навколо своєї осі симетрії щодо операційних станцій, розташованих навколо поворотного столу. Такі компонування застосовують при обробці набору регулярних поверхонь в оброблюваній деталі, тобто однакових, рівномірно-розташованих навколо осі деталі на визначеному радіусі. Готова деталь при цьому знімається за один повний оборот планшайби поворотного столу;
3) з кільцевим столом і центральною колоною, на гранях якої встановлюються силові агрегати. Таке компонування дозволяє забезпечити більш високу концетрацию операцій, обробку деталі з більшого числа сторін. Однак, цей вид компонування є менш технологичным у виготовленні й експлуатації, тому що утруднений доступ до силових агрегатів і різальних інструментів, розташованим на центральній колоні усередині планшайби кільцевого столу.
По характері взаємодії блоків інструментів силових агрегатів з робочими позиціями компонування типу Б можуть бути двох різновидів: а) з індивідуальними операційними станціями(силовими агрегатами) на кожній позиції (див. мал.1.1);
б) із загальними силовими агрегатами (чи одним силовим агрегатом) на кілька робочих позицій чи відразу на всі позиції. Останній варіант, коли один вертикально розташований силовий агрегат з багатошпиндельною коробкою і різальними інструментами в її шпинделях виконує обробку у всіх робочих позиціях, називають компонуванням, що накриває. Таке компонування характерне для великих агрегатних верстатів виробництва МЗАЛ і Московського станкозаводу.
На мал.1.1 приведений приклад верстата з компонуванням типу Б1а, на мал.1.2 - типу Б1б, на мал.1.3 - типу Б3;
В) компонування з багатопозиційним поворотним барабаном, що обертається навколо горизонтальної осі (багатопозиційні барабанного типу). Обробка в них можлива одночасно з двох протилежних сторін. Силові агрегати розташовуються по торцях поворотного барабана. Приклад верстата з таким компонуванням приведений на мал.1.4;
Г) багато- чи однопозиційні верстати з прямолінійним поступальним рухом позиционирования. Такі агрегатні верстати застосовуються для обробки (за кілька проходів) великогабаритних деталей, а також для виконання повторюваних операцій. При такім компонуванні верстата зручно виконувати двосторонню обробку. Прямолінійний поступальний рух столу використовується для введення заготівлі в зону обробки і висновку обробленої деталі. На мал.1.5 приведений приклад верстата з прямолінійним рухом позиціонування фірми Хилле. Верстат має 3 позиції, з яких 2 робочі й одна завантажувально-розвантажувальна.
При проектуванні і виробництві агрегатних верстатів використовуються уніфіковані функціональні вузли єдиної гами, що поділяються на чотири основні групи: силові, шпиндельні(вузли технологічного оснащення силових вузлів), базові і транспортні. Крім цього, функціональна структура[19] агрегатних верстатів містить у собі систему керування (электро-, гидро- і пневмооборудование), систему змазування рухливих елементів, систему охолодження зони різання і систему відводу стружки. У випадку автоматизації у верстаті компонуються також вузли завантаження-вивантаження оброблюваних деталей і контролю оброблюваних поверхонь. Обов язково проектується і поставляється з верстатом пристрій для настроювання різальних інструментів після їхнього переточування.
Силові агрегати компонуються на основі силових вузлів двох типів: силових голівок і силових столів, на які встановлюються шпиндельні вузли технологічного оснащення. Силові голівки реалізують у своїй конструкції всі рухи різальних інструментів - головне (звичайно обертальне) і циклові рухи - рух подачі і допоміжні (швидкий відвід, підведення, вистій і т.д.). Силові столи реалізують (забезпечують) тільки циклові рухи.
По використовуваному виді енергії силові вузли можуть бути электро-механичними, гідравлічними, пневматичними і комбінованими. Электро-механичні силові голівки по конструкції механізму подач бувають: пинольного типу з плоско-кулачковим чи барабанно-кулачковим приводом, із гвинтовим приводним механізмом рухливого корпуса голівки й інші.
Для виконання конкретних типів технологічних операцій силові вузли оснащуються спеціальними шпиндельними вузлами (начіпними пристосуваннями). На платформу силових столів установлюються шпиндельні (свердлильні, фрезерні, розточувальні й інші) бабки чи багатошпиндельні коробки. Силові голівки оснащуються такого ж типу пристосуваннями, що називають насадками, тому що в голівці вже мається шпиндель чи приводний вал, що одержує обертання від одного з приводом подачі двигуна.
В агрегатних верстатах середнього типорозміру, що випускалися ХЗАС, яким буде і проектований верстат, застосовують силові агрегати на основі плоскокулачкової пинольної силової голівки У1Х4035 і електромеханічних силових столів із гвинтовим приводом УЕ4530.
Силова голівка пинольного типу з плоскокулачковым механізмом подачі використовується для свердління, зенкерування, розгортання, торцування і нарізування різьблення. При оснащенні спеціальними пристосуваннями за допомогою голівки можна виконати фрезерування, обточування і розточування кільцевих канавок в отворах. Передбачено можливість оснащення голівки багатошпиндельною насадкою, механізмом зворотного ходу, механізмом двосторонньої обробки, фрезерною насадкою й іншими пристроями. Голівка може встановлюватися в горизонтальному, вертикальному чи похилому положенні.
Як транспортний пристрій для періодичного переміщення встановлених у пристосуваннях оброблюваних деталей з однієї позиції на іншу з точною фіксацією (позиціонуванням) їх на кожній позиції, в агрегатних верстатах з компонуванням типу Б1 і Б2 застосовують поворотно-ділильні столи, що розрізняють-ся конструкцією привода повороту планшайби і її діаметром. Як привод повороту використовуються электро- і гидро-механічні приводи з зубцюватими, черв ячни-ми і мальтійськими механізмами реалізації періодичних рухів. В агрегатних верстатах виробництва ХЗАС застосовують електромеханічні поворотні столи з мальтійським механізмом повороту внутрішнього зачеплення. Число позицій планшайби цих столів складає 2 - 12. Ці столи випускають з діаметром планшайби 500, 630 і 800 мм.
До уніфікованих базових вузлів і деталей агрегатних верстатів відносяться корпусні деталі несущої системи: станини, стійки, підкладки й інші. Елементи (вузли і деталі) інших функціональних систем агрегатних верстатів (затискних пристосувань, систем змазування, охолодження, відводу стружки й інших) є частково уніфікованими чи створюються на основі документації типових проектів цих вузлів.
Схема гидравлическая принципиальная работы фрезерного приспособления (зажим, разжим, центрирование)
http://www.ce-studbaza.ru/werk.php?id=9190
Схема гидравлическая принципиальная работы фрезерного приспособления (зажим, разжим, центрирование)
Схема гидравлическая принципиальная работы фрезерного приспособления (зажим, разжим, центрирование)
Подписаться на:
Сообщения (Atom)